559 research outputs found

    Regulation of p53 localization

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65260/1/j.1432-1327.2001.02227.x.pd

    Low-Dimensional ZnO Nanostructures: Fabrication, Optical Properties, and Applications for Dye-Sensitized Solar Cells

    Get PDF
    Zinc oxide nanostructure has a wide bandgap energy of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. It is certainly a promising material for photonic devices in the ultraviolet to blue wavelength range. ZnO-related materials are also expected to construct the exciton as well as polariton lasers owing to their excitonic-stimulated emission and laser behavior under optically pumping can be obtained at ambient temperature. Because of the optical losses, including not only nonradiative recombination centers but also traps of excitons, the high quality of ZnO becomes even more imperative in the excitonic lasing processes. In the present chapter, ZnO nanowire structures via a low-pressure vapor-phase deposition and a simple solvothermal method will be presented. The one-dimensional ZnO nanowires could afford a direct conduction pathway to significantly enhance the overall efficiency of the dye-sensitized solar cells. Furthermore, this content will demonstrate how to employ the hierarchical structure of the ZnO nanoparticles, fabricated from sol-gel method, which could promote light scattering, thus, enhancing photon absorption and the overall solar conversion efficiency. The aim of this chapter is to present the correlation between the fundamental properties of ZnO nanostructures and their photovoltaics performances

    The Potential Economic Impact of Avian Flu Pandemic on Taiwan

    Get PDF
    This study analyzes the potential consequences of an outbreak of avian influenza (H5N1) on Taiwan¥Šs macro economy and individual industries. Both the Input-Output (IO) Analysis Model and Computable General Equilibrium (CGE) Model are used to simulate the possible damage brought by lowering domestic consumption, export, and labor supply. The simulation results indicates that if the disease is confined within the poultry sector, then the impact on real GDP is around -0.1%~-0.4%. Once it becomes a human-to-human pandemic, the IO analysis suggests that the potential impacts on real GDP would be as much as -4.2%~-5.9% while labor demand would decrease 4.9%~6.4%. In the CGE analysis, which allows for resource mobility and substitutions through price adjustments, the real GDP and labor demand would contract 2.0%~2.4% and 2.2%~2.4%, respectively, and bringing down consumer prices by 3%. As for the individual sector, the outbreak will not only damage the poultry sector and its upstream and downstream industries, but also affect the service sectors including wholesale, retail, trade, air transportation, restaurants, as well as healthcare services. These results can be used to support public investment in animal disease control measures.Avian Flu Pandemic, Input-output Model, Computable General Equilibrium Model, Livestock Production/Industries,

    Field Monitoring in the Yilan River Experimental Watershed

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive

    Polynomial Fuzzy Observer-Based Feedback Control for Nonlinear Hyperbolic PDEs Systems

    Get PDF
    This article explores the observer-based feedback control problem for a nonlinear hyperbolic partial differential equations (PDEs) system. Initially, the polynomial fuzzy hyperbolic PDEs (PFHPDEs) model is established through the utilization of the fuzzy identification approach, derived from the nonlinear hyperbolic PDEs model. Various types of state estimation and controller design problems for the polynomial fuzzy PDEs system are discussed concerning the state estimation problem. To investigate the relaxed stability problem, Euler’s homogeneous theorem, Lyapunov–Krasovskii functional with polynomial matrices (LKFPM), and the sum-of-squares (SOSs) approach are adopted. The exponential stabilization condition is formulated in terms of the spatial-derivative-SOSs (SD-SOSs). Additionally, a segmental algorithm is developed to find the feasible solution for the SD-SOS condition. Finally, a hyperbolic PDEs system and several numerical examples are provided to illustrate the validity and effectiveness of the proposed results

    Enhanced photo-excitation and angular-momentum imprint of gray excitons in WSe2_{2} monolayers by spin-orbit-coupled vector vortex beams

    Full text link
    A light beam can be spatially structured in the complex amplitude to possess orbital angular momentum (OAM), which introduces a new degree of freedom alongside the intrinsic spin angular momentum (SAM) associated with circular polarization. Moreover, super-imposing two twisted lights with distinct SAM and OAM produces a vector vortex beam (VVB) in non-separable states where not only complex amplitude but also polarization are spatially structured and entangled with each other. In addition to the non-separability, the SAM and OAM in a VVB are intrinsically coupled by the optical spin-orbit interaction and constitute the profound spin-orbit physics in photonics. In this work, we present a comprehensive theoretical investigation, implemented on the first-principles base, of the intriguing light-matter interaction between VVBs and WSe2_{2} monolayers (WSe2_{2}-MLs), one of the best-known and promising two-dimensional (2D) materials in optoelectronics dictated by excitons, encompassing bright exciton (BX) as well as various dark excitons (DXs). One of the key findings of our study is the substantial enhancement of the photo-excitation of gray excitons (GXs), a type of spin-forbidden dark exciton, in a WSe2_2-ML through the utilization of a twisted light that possesses a longitudinal field associated with the optical spin-orbit interaction. Our research demonstrates that a spin-orbit-coupled VVB surprisingly allows for the imprinting of the carried optical information onto gray excitons in 2D materials, which is robust against the decoherence mechanisms in materials. This observation suggests a promising method for deciphering the transferred angular momentum from structured lights to excitons

    Spleen artery embolization increases the success of nonoperative management following blunt splenic injury

    Get PDF
    AbstractBackgroundSpleen artery embolization (SAE) may increase the success rate of nonoperative management (NOM). The present study investigated the clinical outcome after the installation of SAE in the management of blunt splenic injury.MethodsA retrospective review of hospital records was performed to enroll patients with blunt injury of the spleen. Demographic data and information about the injury severity score, organ injury scale, hospitalization days, management and final outcomes were evaluated. Patients were separated into early and late groups according to the year that SAE was selectively used (2003–2004 and 2005–2008).ResultsSix of eleven (55%) patients in the early group were successfully managed without surgery for blunt splenic injury, whereas all of the 38 patients (100%) in the late group were successfully managed without surgery. Eleven patients (11 of 38; 28.9%) received SAE in the late group. The rate of NOM increased from 55% in the early group to 100% in the late group (p < 0.001). Both early and late groups had similar injury severity score, length of hospitalization, blood transfusion, and complications, and there was no mortality.ConclusionPerformance of SAE for the patients with blunt splenic injury could increase the successful rate of NOM significantly and safely. An algorithm including the angioembolization might be beneficial in the management of patients with blunt spleen trauma

    SCintillation and IONosphere eXtended (SCION-X): A 12U CubeSat for Ionospheric and Atmospheric Science

    Get PDF
    SCION-X (SCintillation and IONosphere eXtended) is a 12U CubeSat that is being designed and developed by Upper Air Dynamics Laboratory, National Central University (NCU). SCION-X is the second funded CubeSat project being developed by NCU and is the largest self-developed spacecraft to date. This mission will help to further understand the variation of ionospheric irregularities, remote sensing methods for PM2.5 pollution distribution, and thermospheric photochemistry while serving as a relay station for amateur radio. Furthermore, it will help increase the communication and cooperation between universities in developing spaceflight capacity
    • 

    corecore