50 research outputs found

    Simultaneous determine of Doppler shift and group delay time using amplitude modulated chirp-signal

    Get PDF
    New method of the simultaneous measurement of the frequency dependencies of Doppler shift and group delay time of separate ionosphere modes by means of amplitude modulated chirp signal is presented in this paper. The algorithms of data processing are presented.Представлено новий метод одночасного вимірювання частотних залежностей допплерівського зсуву і часу групової затримки окремих іоносферних мод з використанням безперервного ЛЧМ сигналу з амплітудною модуляцією. Наведено порядок обробки даних під час вимірювання

    Ionospheric Effects of a Solar Eclipse of March 20, 2015 on Oblique Sounding Paths in the Eurasian Longitudinal Sector

    Get PDF
    © 2016, Springer Science+Business Media New York.The results of measuring HF signals on oblique chirp sounding paths in the Eurasian region during a solar eclipse of March 20, 2015 and the neighboring days are presented. The solar eclipse took place against the background of a strong magnetic storm. It was established that during the solar eclipse on oblique sounding paths of different length and orientation the decrease in the maximum observable frequency for the F mode (MOF-F) and the lowest observable frequency for the F mode (LOF-F) was 8–14% and 22–33%, respectively. During the eclipse, the signal amplitude increased by 3–5 dB. On the Lovozero—Nizhny Novgorod path in the maximum phase of the solar eclipse, the electron density decrease in the ionospheric E and F2 layers at the midpoint of the path reached 37% and 22%, respectively. According to the MOF and LOF variation measurements for various modes, the group delay time of radio signals, and the results of spectral analysis, it was found that in the eclipse there were wave disturbances with a period of 25 to 50 min. However, quasi-periodic variations of MOF-F and LOF-F having a a period of 50 to 80 min but which started before the eclipse were detected on some paths. Probably, in these cases, the variations were a result of the superposition of disturbances from two sources, namely, the magnetic storm and the solar eclipse

    Impact of a Strong Magnetic Storm and Two X-Ray Flares on the Ionospheric HF Channel in the Summer Solstice of 2015 According to Oblique Sounding in the Eurasian Region

    Get PDF
    © 2017, Springer Science+Business Media, LLC. We present the results of observations of the impact a strong magnetic storm and two X-ray flares in the summer solstice of 2015 on the HF signal characteristics during oblique sounding of the ionosphere in the Eurasian region. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, up to a long blackout on the paths adjacent to the subauroral latitudes. On the midlatitude paths, a decrease in the maximum observable frequency of the F layer reached 50% with respect to the average values for an undisturbed ionosphere. The propagation velocity of the negative phase of a disturbance from the subauroral to the midlatitude ionosphere is determined (it is equal to about 100 m/s). It is shown that during a magnetic storm the least observable frequency and the average signal-to-noise ratio for the propagation mode via the sporadic E s layer correlate well with the auroral AE index. Anomalous signals were detected in the main phase of the magnetic storm on the Cyprus—Rostov-on-Don path when a chirp ionosonde–radio direction finder was operated in the over-the-horizon HF radar mode. On the basis of modeling and comparison with experimental data, it is shown that the anomalous signals are due to scattering of radio waves by small-scale irregularities located in the subauroral ionospheric F region

    Impact of a Strong Magnetic Storm and Two X-Ray Flares on the Ionospheric HF Channel in the Summer Solstice of 2015 According to Oblique Sounding in the Eurasian Region

    Get PDF
    © 2017 Springer Science+Business Media, LLC We present the results of observations of the impact a strong magnetic storm and two X-ray flares in the summer solstice of 2015 on the HF signal characteristics during oblique sounding of the ionosphere in the Eurasian region. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, up to a long blackout on the paths adjacent to the subauroral latitudes. On the midlatitude paths, a decrease in the maximum observable frequency of the F layer reached 50% with respect to the average values for an undisturbed ionosphere. The propagation velocity of the negative phase of a disturbance from the subauroral to the midlatitude ionosphere is determined (it is equal to about 100 m/s). It is shown that during a magnetic storm the least observable frequency and the average signal-to-noise ratio for the propagation mode via the sporadic E s layer correlate well with the auroral AE index. Anomalous signals were detected in the main phase of the magnetic storm on the Cyprus—Rostov-on-Don path when a chirp ionosonde–radio direction finder was operated in the over-the-horizon HF radar mode. On the basis of modeling and comparison with experimental data, it is shown that the anomalous signals are due to scattering of radio waves by small-scale irregularities located in the subauroral ionospheric F region

    Impact of heliogeophysical disturbances on ionospheric HF channels

    Get PDF
    © 2017 COSPAR. The article presents the results of the observation of a strong magnetic storm and two X-ray flares during the summer solstice in 2015, and their impact on the HF signals characteristics in ionospheric oblique sounding. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, ultimately causing a long blackout on paths adjacent to subauroral latitudes. On mid-latitude paths, the decrease in 1FMOF reached ∼50% relative to the average values for the quiet ionosphere. It is shown that the propagation conditions via the sporadic Es layer during the magnetic storm on a subauroral path are substantially better than those for F-mode propagation via the upper ionosphere. The delay of the sharp decrease in 1FMOF during the main phase of the magnetic storm allowed us to determine the propagation velocity of the negative phase disturbances (∼100. m/s) from subauroral to mid-latitude ionosphere along two paths: Lovozero - Yoshkar-Ola and Cyprus - Nizhny Novgorod. It is shown that both the LOF and the signal/noise ratio averaged over the frequency band corresponding to the propagation mode via the sporadic Es layer correlate well with the auroral AE index. Using an over-the-horizon chirp radar with a bistatic configuration on the Cyprus - Rostov-on-Don path, we located small-scale scattering irregularities responsible for abnormal signals in the region of the equatorial boundary of the auroral oval

    Measure of frequency dependences of Doppler frequency shift and spread time of each ionospheric mode with help of continuous LFM signal

    No full text
    It is considered a method for definition of frequency dependences of group delay time and Doppler frequency shift of short wave propagation separate modes, based on radiosignal probing by means of two continuous linearly frequency modulated signals, which are shifted on time period T, with identical irradiation parameters, and corresponding manipulation in a receiver. Estimations of measuring accuracy are shown. Proposed method application allows to increase self-descriptiveness of health monitoring systems for ionospheric radio communication lines by LFM signal

    Simultaneous measuring of Doppler frequency shift and group delay time by means of amplitude-modulated LFM-signal

    No full text
    New method of the simultaneous measurement of the frequency dependencies of Doppler shift and group delay time of separate ionosphere modes by means of amplitude modulated chirp signal is presented in this paper. The algorithms for data processing are presented

    Application of a mixture model of probability distributions when detecting radiophysical signals

    No full text
    © 2019 IEEE. The paper shows the effectiveness of using a mixture model of probability distributions when detecting signals of radiophysical sounding. By simulating characteristics of the mixture of noise samples and a emitted signal, it was established that the hazard function can be used as an integral characteristic of the mixture, which indicates the presence of signal samples. The method of using the hazard function for signal detection is given. The results of experimental approbation of the proposed method are carried out

    Ionospheric Effects of a Solar Eclipse of March 20, 2015 on Oblique Sounding Paths in the Eurasian Longitudinal Sector

    No full text
    © 2016, Springer Science+Business Media New York.The results of measuring HF signals on oblique chirp sounding paths in the Eurasian region during a solar eclipse of March 20, 2015 and the neighboring days are presented. The solar eclipse took place against the background of a strong magnetic storm. It was established that during the solar eclipse on oblique sounding paths of different length and orientation the decrease in the maximum observable frequency for the F mode (MOF-F) and the lowest observable frequency for the F mode (LOF-F) was 8–14% and 22–33%, respectively. During the eclipse, the signal amplitude increased by 3–5 dB. On the Lovozero—Nizhny Novgorod path in the maximum phase of the solar eclipse, the electron density decrease in the ionospheric E and F2 layers at the midpoint of the path reached 37% and 22%, respectively. According to the MOF and LOF variation measurements for various modes, the group delay time of radio signals, and the results of spectral analysis, it was found that in the eclipse there were wave disturbances with a period of 25 to 50 min. However, quasi-periodic variations of MOF-F and LOF-F having a a period of 50 to 80 min but which started before the eclipse were detected on some paths. Probably, in these cases, the variations were a result of the superposition of disturbances from two sources, namely, the magnetic storm and the solar eclipse

    Ionospheric Effects of a Solar Eclipse of March 20, 2015 on Oblique Sounding Paths in the Eurasian Longitudinal Sector

    No full text
    © 2016, Springer Science+Business Media New York.The results of measuring HF signals on oblique chirp sounding paths in the Eurasian region during a solar eclipse of March 20, 2015 and the neighboring days are presented. The solar eclipse took place against the background of a strong magnetic storm. It was established that during the solar eclipse on oblique sounding paths of different length and orientation the decrease in the maximum observable frequency for the F mode (MOF-F) and the lowest observable frequency for the F mode (LOF-F) was 8–14% and 22–33%, respectively. During the eclipse, the signal amplitude increased by 3–5 dB. On the Lovozero—Nizhny Novgorod path in the maximum phase of the solar eclipse, the electron density decrease in the ionospheric E and F2 layers at the midpoint of the path reached 37% and 22%, respectively. According to the MOF and LOF variation measurements for various modes, the group delay time of radio signals, and the results of spectral analysis, it was found that in the eclipse there were wave disturbances with a period of 25 to 50 min. However, quasi-periodic variations of MOF-F and LOF-F having a a period of 50 to 80 min but which started before the eclipse were detected on some paths. Probably, in these cases, the variations were a result of the superposition of disturbances from two sources, namely, the magnetic storm and the solar eclipse
    corecore