1,180 research outputs found

    Design and implementation of a pedagogic intervention using writing analytics

    Full text link
    © 2017 Asia-Pacific Society for Computers in Education. All rights reserved. Academic writing is a key skill required for higher education students, which is often challenging to learn. A promising approach to help students develop this skill is the use of automated tools that provide formative feedback on writing. However, such tools are not widely adopted by students unless useful for their discipline-related writing, and embedded in the curriculum. This recognition motivates an increased emphasis in the field on aligning learning analytics applications with learning design, so that analytics-driven feedback is congruent with the pedagogy and assessment regime. This paper describes the design, implementation, and evaluation of a pedagogic intervention that was developed for law students to make use of an automated Academic Writing Analytics tool (AWA) for improving their academic writing. In exemplifying this pedagogically aligned learning analytic intervention, we describe the development of a learning analytics platform to support the pedagogic design, illustrating its potential through example analyses of data derived from the task

    Evidence-Based Dialogue Maps as a research tool to evaluate the quality of school pupils’ scientific argumentation

    Get PDF
    This pilot study focuses on the potential of Evidence-based Dialogue Mapping as a participatory action research tool to investigate young teenagers’ scientific argumentation. Evidence-based Dialogue Mapping is a technique for representing graphically an argumentative dialogue through Questions, Ideas, Pros, Cons and Data. Our research objective is to better understand the usage of Compendium, a Dialogue Mapping software tool, as both (1) a learning strategy to scaffold school pupils’ argumentation and (2) as a method to investigate the quality of their argumentative essays. The participants were a science teacher-researcher, a knowledge mapping researcher and 20 pupils, 12-13 years old, in a summer science course for “gifted and talented” children in the UK. This study draws on multiple data sources: discussion forum, science teacher-researcher’s and pupils’ Dialogue Maps, pupil essays, and reflective comments about the uses of mapping for writing. Through qualitative analysis of two case studies, we examine the role of Evidence-based Dialogue Maps as a mediating tool in scientific reasoning: as conceptual bridges for linking and making knowledge intelligible; as support for the linearisation task of generating a coherent document outline; as a reflective aid to rethinking reasoning in response to teacher feedback; and as a visual language for making arguments tangible via cartographic conventions

    A comparative analysis of the skilled use of automated feedback tools through the lens of teacher feedback literacy

    Get PDF
    Effective learning depends on effective feedback, which in turn requires a set of skills, dispositions and practices on the part of both students and teachers which have been termed feedback literacy. A previously published teacher feedback literacy competency framework has identified what is needed by teachers to implement feedback well. While this framework refers in broad terms to the potential uses of educational technologies, it does not examine in detail the new possibilities of automated feedback (AF) tools, especially those that are open by offering varying degrees of transparency and control to teachers. Using analytics and artificial intelligence, open AF tools permit automated processing and feedback with a speed, precision and scale that exceeds that of humans. This raises important questions about how human and machine feedback can be combined optimally and what is now required of teachers to use such tools skillfully. The paper addresses two research questions: Which teacher feedback competencies are necessary for the skilled use of open AF tools? and What does the skilled use of open AF tools add to our conceptions of teacher feedback competencies? We conduct an analysis of published evidence concerning teachers’ use of open AF tools through the lens of teacher feedback literacy, which produces summary matrices revealing relative strengths and weaknesses in the literature, and the relevance of the feedback literacy framework. We conclude firstly, that when used effectively, open AF tools exercise a range of teacher feedback competencies. The paper thus offers a detailed account of the nature of teachers’ feedback literacy practices within this context. Secondly, this analysis reveals gaps in the literature, signalling opportunities for future work. Thirdly, we propose several examples of automated feedback literacy, that is, distinctive teacher competencies linked to the skilled use of open AF tools

    Xtru3D: Single-View 3D Object Reconstruction from Color and Depth Data

    Get PDF
    D object reconstruction from single image has been a noticeable research trend in recent years. The most common method is to rely on symmetries of real-life objects, but these are hard to compute in practice. However, a large class of everyday objects, especially when manufactured, can be generated by extruding a 2D shape through an extrusion axis. This paper proposes to exploit this property to acquire 3D object models using a single RGB+Depth image, such as those provided by available low-cost range cameras. It estimates the hidden parts by exploiting the geometrical properties of everyday objects, and both depth and color information are combined to refine the model of the object of interest. Experimental results on a set of 12 common objects are shown to demonstrate not only the effectiveness and simplicity of our approach, but also its applicability for tasks such as robotic grasping.The research leading to these results has been funded by the HANDLE European project (FP7/2007-2013) under grant agreement ICT 231640-http://www.handle-project.eu.Publicad

    Pose-based Tremor Classification for Parkinson's Disease Diagnosis from Video

    Full text link
    Parkinson's disease (PD) is a progressive neurodegenerative disorder that results in a variety of motor dysfunction symptoms, including tremors, bradykinesia, rigidity and postural instability. The diagnosis of PD mainly relies on clinical experience rather than a definite medical test, and the diagnostic accuracy is only about 73-84% since it is challenged by the subjective opinions or experiences of different medical experts. Therefore, an efficient and interpretable automatic PD diagnosis system is valuable for supporting clinicians with more robust diagnostic decision-making. To this end, we propose to classify Parkinson's tremor since it is one of the most predominant symptoms of PD with strong generalizability. Different from other computer-aided time and resource-consuming Parkinson's Tremor (PT) classification systems that rely on wearable sensors, we propose SPAPNet, which only requires consumer-grade non-intrusive video recording of camera-facing human movements as input to provide undiagnosed patients with low-cost PT classification results as a PD warning sign. For the first time, we propose to use a novel attention module with a lightweight pyramidal channel-squeezing-fusion architecture to extract relevant PT information and filter the noise efficiently. This design aids in improving both classification performance and system interpretability. Experimental results show that our system outperforms state-of-the-arts by achieving a balanced accuracy of 90.9% and an F1-score of 90.6% in classifying PT with the non-PT class.Comment: MICCAI 202

    From A to Z: Wearable technology explained

    Get PDF
    Wearable technology (WT) has become a viable means to provide low-cost clinically sensitive data for more informed patient assessment. The benefit of WT seems obvious: small, worn discreetly in any environment, personalised data and possible integration into communication networks, facilitating remote monitoring. Yet, WT remains poorly understood and technology innovation often exceeds pragmatic clinical demand and use. Here, we provide an overview of the common challenges facing WT if it is to transition from novel gadget to an efficient, valid and reliable clinical tool for modern medicine. For simplicity, an A–Z guide is presented, focusing on key terms, aiming to provide a grounded and broad understanding of current WT developments in healthcare

    Pro-active Meeting Assistants: Attention Please!

    Get PDF
    This paper gives an overview of pro-active meeting assistants, what they are and when they can be useful. We explain how to develop such assistants with respect to requirement definitions and elaborate on a set of Wizard of Oz experiments, aiming to find out in which form a meeting assistant should operate to be accepted by participants and whether the meeting effectiveness and efficiency can be improved by an assistant at all. This paper gives an overview of pro-active meeting assistants, what they are and when they can be useful. We explain how to develop such assistants with respect to requirement definitions and elaborate on a set of Wizard of Oz experiments, aiming to find out in which form a meeting assistant should operate to be accepted by participants and whether the meeting effectiveness and efficiency can be improved by an assistant at all

    Scaffolding School Pupils’ Scientific Argumentation with Evidence-Based Dialogue Maps

    Get PDF
    This chapter reports pilot work investigating the potential of Evidence-based Dialogue Mapping to scaffold young teenagers’ scientific argumentation. Our research objective is to better understand pupils’ usage of dialogue maps created in Compendium to write scientific ex-planations. The participants were 20 pupils, 12-13 years old, in a summer science course for “gifted and talented” children in the UK. Through qualitative analysis of three case studies, we investigate the value of dialogue mapping as a mediating tool in the scientific reasoning process during a set of learning activities. These activities were published in an online learning envi-ronment to foster collaborative learning. Pupils mapped their discussions in pairs, shared maps via the online forum and in plenary discussions, and wrote essays based on their dialogue maps. This study draws on these multiple data sources: pupils’ maps in Compendium, writings in science and reflective comments about the uses of mapping for writing. Our analysis highlights the diversity of ways, both successful and unsuccessful, in which dialogue mapping was used by these young teenagers

    Social Interaction-Aware Dynamical Models and Decision Making for Autonomous Vehicles

    Full text link
    Interaction-aware Autonomous Driving (IAAD) is a rapidly growing field of research that focuses on the development of autonomous vehicles (AVs) that are capable of interacting safely and efficiently with human road users. This is a challenging task, as it requires the autonomous vehicle to be able to understand and predict the behaviour of human road users. In this literature review, the current state of IAAD research is surveyed in this work. Commencing with an examination of terminology, attention is drawn to challenges and existing models employed for modelling the behaviour of drivers and pedestrians. Next, a comprehensive review is conducted on various techniques proposed for interaction modelling, encompassing cognitive methods, machine learning approaches, and game-theoretic methods. The conclusion is reached through a discussion of potential advantages and risks associated with IAAD, along with the illumination of pivotal research inquiries necessitating future exploration
    corecore