99 research outputs found

    Enhancing Perception and Immersion in Pre-Captured Environments through Learning-Based Eye Height Adaptation

    Full text link
    Pre-captured immersive environments using omnidirectional cameras provide a wide range of virtual reality applications. Previous research has shown that manipulating the eye height in egocentric virtual environments can significantly affect distance perception and immersion. However, the influence of eye height in pre-captured real environments has received less attention due to the difficulty of altering the perspective after finishing the capture process. To explore this influence, we first propose a pilot study that captures real environments with multiple eye heights and asks participants to judge the egocentric distances and immersion. If a significant influence is confirmed, an effective image-based approach to adapt pre-captured real-world environments to the user's eye height would be desirable. Motivated by the study, we propose a learning-based approach for synthesizing novel views for omnidirectional images with altered eye heights. This approach employs a multitask architecture that learns depth and semantic segmentation in two formats, and generates high-quality depth and semantic segmentation to facilitate the inpainting stage. With the improved omnidirectional-aware layered depth image, our approach synthesizes natural and realistic visuals for eye height adaptation. Quantitative and qualitative evaluation shows favorable results against state-of-the-art methods, and an extensive user study verifies improved perception and immersion for pre-captured real-world environments.Comment: 10 pages, 13 figures, 3 tables, submitted to ISMAR 202

    3D Reconstruction of Sculptures from Single Images via Unsupervised Domain Adaptation on Implicit Models

    Full text link
    Acquiring the virtual equivalent of exhibits, such as sculptures, in virtual reality (VR) museums, can be labour-intensive and sometimes infeasible. Deep learning based 3D reconstruction approaches allow us to recover 3D shapes from 2D observations, among which single-view-based approaches can reduce the need for human intervention and specialised equipment in acquiring 3D sculptures for VR museums. However, there exist two challenges when attempting to use the well-researched human reconstruction methods: limited data availability and domain shift. Considering sculptures are usually related to humans, we propose our unsupervised 3D domain adaptation method for adapting a single-view 3D implicit reconstruction model from the source (real-world humans) to the target (sculptures) domain. We have compared the generated shapes with other methods and conducted ablation studies as well as a user study to demonstrate the effectiveness of our adaptation method. We also deploy our results in a VR application

    Enhancing surgical performance in cardiothoracic surgery with innovations from computer vision and artificial intelligence: a narrative review

    Get PDF
    When technical requirements are high, and patient outcomes are critical, opportunities for monitoring and improving surgical skills via objective motion analysis feedback may be particularly beneficial. This narrative review synthesises work on technical and non-technical surgical skills, collaborative task performance, and pose estimation to illustrate new opportunities to advance cardiothoracic surgical performance with innovations from computer vision and artificial intelligence. These technological innovations are critically evaluated in terms of the benefits they could offer the cardiothoracic surgical community, and any barriers to the uptake of the technology are elaborated upon. Like some other specialities, cardiothoracic surgery has relatively few opportunities to benefit from tools with data capture technology embedded within them (as is possible with robotic-assisted laparoscopic surgery, for example). In such cases, pose estimation techniques that allow for movement tracking across a conventional operating field without using specialist equipment or markers offer considerable potential. With video data from either simulated or real surgical procedures, these tools can (1) provide insight into the development of expertise and surgical performance over a surgeon’s career, (2) provide feedback to trainee surgeons regarding areas for improvement, (3) provide the opportunity to investigate what aspects of skill may be linked to patient outcomes which can (4) inform the aspects of surgical skill which should be focused on within training or mentoring programmes. Classifier or assessment algorithms that use artificial intelligence to ‘learn’ what expertise is from expert surgical evaluators could further assist educators in determining if trainees meet competency thresholds. With collaborative efforts between surgical teams, medical institutions, computer scientists and researchers to ensure this technology is developed with usability and ethics in mind, the developed feedback tools could improve cardiothoracic surgical practice in a data-driven way

    On the Design Fundamentals of Diffusion Models: A Survey

    Full text link
    Diffusion models are generative models, which gradually add and remove noise to learn the underlying distribution of training data for data generation. The components of diffusion models have gained significant attention with many design choices proposed. Existing reviews have primarily focused on higher-level solutions, thereby covering less on the design fundamentals of components. This study seeks to address this gap by providing a comprehensive and coherent review on component-wise design choices in diffusion models. Specifically, we organize this review according to their three key components, namely the forward process, the reverse process, and the sampling procedure. This allows us to provide a fine-grained perspective of diffusion models, benefiting future studies in the analysis of individual components, the applicability of design choices, and the implementation of diffusion models

    HINT: High-quality INpainting Transformer with Mask-Aware Encoding and Enhanced Attention

    Get PDF
    Existing image inpainting methods leverage convolution-based downsampling approaches to reduce spatial dimensions. This may result in information loss from corrupted images where the available information is inherently sparse, especially for the scenario of large missing regions. Recent advances in self-attention mechanisms within transformers have led to significant improvements in many computer vision tasks including inpainting. However, limited by the computational costs, existing methods cannot fully exploit the efficacy of long-range modelling capabilities of such models. In this paper, we propose an end-to-end High-quality INpainting Transformer, abbreviated as HINT, which consists of a novel mask-aware pixel-shuffle downsampling module (MPD) to preserve the visible information extracted from the corrupted image while maintaining the integrity of the information available for highlevel inferences made within the model. Moreover, we propose a Spatially-activated Channel Attention Layer (SCAL), an efficient self-attention mechanism interpreting spatial awareness to model the corrupted image at multiple scales. To further enhance the effectiveness of SCAL, motivated by recent advanced in speech recognition, we introduce a sandwich structure that places feed-forward networks before and after the SCAL module. We demonstrate the superior performance of HINT compared to contemporary state-of-the-art models on four datasets, CelebA, CelebA-HQ, Places2, and Dunhuang

    Automatic Dance Generation System Considering Sign Language Information

    Get PDF
    In recent years, thanks to the development of 3DCG animation editing tools (e.g. MikuMikuDance), a lot of 3D character dance animation movies are created by amateur users. However it is very difficult to create choreography from scratch without any technical knowledge. Shiratori et al. [2006] produced the dance automatic generation system considering rhythm and intensity of dance motions. However each segment is selected randomly from database, so the generated dance motion has no linguistic or emotional meanings. Takano et al. [2010] produced a human motion generation system considering motion labels. However they use simple motion labels like “running” or “jump”, so they cannot generate motions that express emotions. In reality, professional dancers make choreography based on music features or lyrics in music, and express emotion or how they feel in music. In our work, we aim at generating more emotional dance motion easily. Therefore, we use linguistic information in lyrics, and generate dance motion. In this paper, we propose the system to generate the sign dance motion from continuous sign language motion based on lyrics of music. This system could help the deaf to listen to music as visualized music application
    corecore