
Citation: Shum, Hubert P. H., Komura, Taku and Takagi, Shu (2011) Fast accelerometer-

based motion recognition with a dual buffer framework. The International Journal of Virtual

Reality, 10 (3). pp. 17-24. ISSN 1081-1451

Published by: IPI Press

URL:

This version was downloaded from Northumbria Research Link:

http://nrl.northumbria.ac.uk/10422/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to

access the University’s research output. Copyright © and moral rights for items on NRL are

retained by the individual author(s) and/or other copyright owners. Single copies of full items

can be reproduced, displayed or performed, and given to third parties in any format or

medium for personal research or study, educational, or not-for-profit purposes without prior

permission or charge, provided the authors, title and full bibliographic details are given, as

well as a hyperlink and/or URL to the original metadata page. The content must not be

changed in any way. Full items must not be sold commercially in any format or medium

without formal permission of the copyright holder. The full policy is available online:

http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been

made available online in accordance with publisher policies. To read and/or cite from the

published version of the research, please visit the publisher’s website (a subscription may be

required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/9587685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html

1

Fast Accelerometer-Based Motion Recognition with
a Dual Buffer Framework

Hubert P. H. Shum, Taku Komura and Shu Takagi

Abstract—The low-cost gyro-accelerometer based controllers
have opened up a potential of using 3D computer games for
serious applications such as sports and vocational training.
Previous games apply simple template matching for the motion
recognition which suffers from poor accuracy and time lag. In
order to cope with these problems, we propose a novel dual
buffer approach that dramatically increases the recognition rate
and shortens the time lag for motion recognition. The system first
recognizes the user control signal with a small buffer to minimize
the time lag. When more signals arrive from the sensor, an
elaborate recognition is performed, and the previously recognized
action is switched if necessary. Using boxing as an example, we
show that we can control a virtual character to perform 13
different actions using a buffer size of one-tenth of a second.
Since our system is computationally inexpensive, it can be used
in game consoles. As it is accurate and responsive, it can also be
applied for serious sport training.

I. I NTRODUCTION

Inertia-based sensors are currently the most low-cost and
widely used sensors for recognizing the human movements
in real-time. For controlling virtual characters in computer
games, the system analyzes the acceleration profile of the
controller and matches them with the template profiles, and
finally the corresponding action is launched by the virtual
character.

A simple template matching algorithm could work satis-
factory for simple action games, in which the number of
available actions is limited and the response time is less
important. However, it is not good enough for applications
such as sports training, in which the system needs to recognize
a wide variety of actions in a very short time. Furthermore,
even for entertainment, due to the increasing expectation of
the game quality, we need better algorithms for controlling
virtual characters.

In order to cope with this problem, we propose a novel dual
buffer approach that dramatically increases the recognition rate
and shortens the time lag for motion recognition. We first
recognize the motion using a short sequence of signals to
ensure fast system response. As more control signals arrive, an
elaborate recognition is performed using the longer sequence
of signals. If the action recognized is different from the results
of the previous recognition, the virtual character will switch
the performing action to the newly matched one. Using boxing
as an example, we show that we can control a virtual character

Hubert P. H. Shum is with the University of Worcester. E-Mail:
h.shum@worc.ac.uk

Taku Komura is with the University of Edinburgh. E-Mail: tko-
mura@inf.ed.ac.uk

Shu Takagi is with RIKEN, Japan. E-Mail: takagish@riken.jp

to perform 13 different actions using a buffer size of one-tenth
of a second.

To demonstrate the effectiveness of our approach, we have
implemented our algorithm on a boxing training system in
which the user can interactively play boxing with the virtual
opponent. The overview of our system is shown in Figure 1.
We capture the movements of a boxer, and segment them into
semantic segments called actions. The actions are organized
into a structure called action level motion graph [1] (Figure
1 middle left). We generate an Interaction Graph [2] which is
used to control characters such that they intelligently interact
with the others in real-time (Figure 1 left). For the user
controlled character, we select some actions as controllable
actions, and associate each of them with a control signal from
the accelerometer (Figure 1 middle right). During run-time, we
collect signals from the accelerometers, and perform matching
to analyze which action the user is performing (Figure 1 right).

The paper is organized as follows: the related works are
described in Section II. The precomputation process to create
the actions and control signals database is described in Section
III. The dual buffer approach for fast action recognition is
explained in Section IV. How we animate the actions of the
character with minimal artifacts is explained in Section V. We
test and evaluate our system in Section VI. We discuss about
our method in Section VII. Finally, we conclude our paper and
state the possible future directions in Section VIII.

II. RELATED WORK

In this research, we create an action database and use
accelerometers to control the virtual characters. Therefore, we
first review methods to control characters using low-degrees
of freedom controllers. During the experiment, we create a
boxing game to test our system. The opponent is an intelli-
gent computer-controlled character trained by sampling-based
reinforcement learning. Therefore, we next discuss researches
related to machine learning.

A. Character Control by Low Degrees of Freedom Sensors

In computer games, the user needs to control virtual char-
acters using a device with low degrees of freedom, such as
joysticks or accelerometers-based controllers like the Wiimote.
Chai and Hodgins [3] proposed a data-driven approach to
control human characters with high degrees of freedom using
the control signals of low degrees of freedom. Shiratori et al.
[4] propose a method to control walking character by attaching
a Wii controller at each leg, and calculating the frequency of

2

Fig. 1. The overview of our system. An action level motion graph is created based on captured motion. Some actions are selected to be controllable actions.
Each of them is associated with a control signal profile. During run-time, we observe the control signals from the accelerometers and perform action matching.
On the other hand, we create an Interaction Graph based on the motion graph to control the computer players.

the stepping motion. This kind of approach cannot be applied
to control characters with a large number of actions.

In the game industry, a lot of methods to control virtual char-
acters using the Wiimote accelerometers have been invented.
In the game “The Legend of Zelda: Twilight Princess”, the
user can let the character swing the sword by shaking the
Wiimote. In “Mario Kart Wii”, the user can tilt the controller
to specify the driving direction of a car. Although such control
methods are applicable for system that only needs to specify
the orientation or the amplitude of some movements, they
cannot be used for recognition of complex full body motions
in sports.

For some games such as “Wii Sports”, the system can clas-
sify the user control signals into action groups. For example, in
the boxing game, users can launch different punching move-
ments such as upper cuts and straight punches by changing
the direction of moving the controller. The major problem is
the trade-off between recognition accuracy and time lag. We
focus on this problem in this paper, and will discuss more in
later sections.

B. Character Control by Machine Learning

Automatically learning to control characters intelligently is
a topic attracting many researchers due to its applicability to
interactive systems such as computer games. Treuille et al. [5]
trains characters to avoid obstacles and other characters when
walking in the virtual environment. Lee and Lee [6] train the
characters to efficiently approach and hit the target, which is
directly applicable for boxing games. McCann and Pollard [7]
applies reinforcement learning to let the system learn how the
user tends to control the character at various situations and let
the character prepare for such actions in advance. These kinds
of training are rather easy as the state space is relatively small.

Machine learning can also be used for training the
computer-controlled character to intelligently interact with
a user controlled character. Graepel et al. [8] trained the
computer-controlled character in fighting games to intelli-
gently compete with user controlled characters. The problem
when handling cases where multiple characters interact with
each other is that the state space becomes too large to be fully
explored. Shum et al. [2] defined several general criteria to

evaluate the importance of the states, and composed a finite
state machine by collecting samples of the important states. In
this research, we will apply the same approach and make use
of the precomputed finite state machine to limit the choices of
actions that can be launched by the user-controlled character.

III. D ATABASE FOR ACTIONS AND CONTROL SIGNALS

In this section, we explain the process to create our action
database for generating computer controlled characters. We
also explain how to associate the control signals to the actions
that are usable by the user controlled characters.

We capture the required motion and organize them into a
data structure called the motion graph. Long sequences of
shadow boxing motion from a professional boxer are captured
using an optical motion capture system. The motion data is
segmented into semantic segments called actions automati-
cally. For boxing, an action can be a straight punch, a step
forward, a defense, or any combination of them. These actions
are tagged based on their nature and used to create an action
level motion graph, in which a node represents a posture and
an edge represents an action. The readers are referred to [1]
for further details.

In our system, the action level motion graph is simplified
for easier control (Figure 1 middle left). The graph is basically
a fat graph [9] with actions as entities. There may be many
fat nodes, which are standard postures for starting and ending
most of the actions. To simplify the control system, we extract
the biggest fat node and the edges connecting to it, and discard
all edges connecting to other nodes. We select some actions
as controllable actions that can be controlled by the human
player. Since the graph consists of one fat node only, we can
always be sure that the user can launch any controllable action
when the character is in the standard posture.

We create a finite state machine called the Interaction Graph
to control the computer players (Figure 1 left). Based on the
action level motion graph, we can generate states of inter-
actions for two characters. We collect the states considering
the quality of the interactions and how often they are visited.
With the collected states, we create the Interaction Graph in
which the nodes are the states of interaction, while the edges
are actions performed by one of the characters. By applying

3

dynamics programming, we can precompute the optimal ac-
tions to be performed for any states of interaction. Therefore,
with the Interaction Graph, we can control intelligent computer
players in real-time with minimal computational cost. The
readers are referred to [2] for further details.

We associate some specific actions with the control signals
of the input device for the real-time control of the user-
controlled character (Figure 1 middle right). Each control
signal consists of a stream of 6 dimensional signals repre-
senting the 3 dimensional acceleration of the two hands at
each frame. Since the user may not perform the action steady
and accurately, we capture multiple trials of the control signal
for the same action. The samples are aligned by dynamic time
warping, and the mean value at each frame is calculated:

E(s(t)) =

nsample∑

i=0

(si(t))/nsample (1)

where si(t) is the 6D signal at framet of the ith sample,
nsample is the total number of samples. The calculated control
signal is then associated to the action for run-time matching.

During run-time, we collect signals from the accelerometer
and match them with the signals stored in the database. The
process will be explained in the next section.

IV. RUN-TIME RECOGNITION WITH DUAL BUFFER

In the section, we explain our framework of using dual
buffer to achieve fast action recognition. We will explain the
process of buffering control signals, recognizing the actions,
and synchronizing the user action with rendering.

When matching actions, a number of signals have to be
cumulated before the recognition starts. This buffer is needed
to increase the accuracy of action matching. An optimal
matching can be performed if the buffer is larger than the
action duration. Traditional approaches use a signal buffer
to store the control signals. If the required buffer size is
large, there will be a lag between the time when the user
starts performing an action and the time when the character
starts acting. However, with a small buffer, the recognition
is inaccurate due to the lack of control information. To cope
with this dilemma, we propose a dual buffer approach which
consists of a main buffer and a supplementary buffer. The
main buffer is a small buffer to conduct a basic, rough action
matching. The supplementary buffer starts to store the signals
when the main buffer is full, and provides extra information
for further matching.

A. Control Signals Management

In this section, we explain how we cumulate the control
signals with the dual buffer.

For every frame, we receive a control signal from the
accelerometer. This is visualized in Figure 2(a), in which each
green block represents the control signal for one frame, the
red rectangle is the main buffer, and the blue rectangle is
the supplementary buffer. The signal will be considered as
noise and discarded if the sum of the magnitude from all
accelerometer is smaller than a predefined threshold, which

is set to 1.0G in our system. Once a valid signal is observed,
we push the signal, as well as any forthcoming signals even
if they contain no acceleration, into the main buffer.

When the main buffer is full, we start the action recognition
thread which runs in background (Figure 2(b)). The oldest
signal from the main buffer is shifted to the supplementary
buffer, and we store the new signal at the beginning of the
main buffer (Figure 2c). When comparing the signals with
those of the action data, the signals in both the main and
supplementary buffer are used for matching.

Fig. 2. (a) The main buffer is cumulating control signal from the accelerom-
eters. (b) The recognition thread starts when the main buffer is full. (c) After
filling up the main buffer, signals are moved from the main buffer to the
supplementary buffer.

If the supplementary buffer is full, the oldest signal will
be discarded. However, as we set the supplementary buffer
size large, we usually reach a buffer clear condition, which is
explained in Section IV-C, before the buffer gets full.

B. Action Recognition

In this section, we explain the action recognition thread that
matches the current signal with those in the database. We also
explain the two high level commands issued by the action
recognition thread once it completes a loop.

We implement a separate action recognition thread such
that the process would not affect the rendering speed when
using a multi-core CPU (Figure 3). This thread is launched
when the main buffer is full. It repeatedly analyzes the user
control signal and provides command to the user controlled
character. In each loop, it concatenates the signals in the main
and supplementary buffer to form a control signal, and applies
dynamic programming for finding the most similar signal
in the database. At the first loop, since the supplementary
buffer is empty, matching is not always accurate. When the
supplementary buffer is gradually filled, a better matching is
performed and the character switches to a new action if the
previous matching is found to be incorrect.

We apply dynamic time warping (DTW) [10] to find the
minimum difference between the observed signal and the
signals stored in the action database. Let us assume the signal
performed by the user to besu(tu), wheretu ∈ [0, tutotal

] is
a frame number, and a signal in the database to besd(td),
where td ∈ [0, tdtotal

]. We first map the initial frame of the
observed signal(su(0)) to that of the signal in the database
(sd(0)). We apply DTW to every signal in the database when
matching it with the control signal. The one with the smallest
difference is selected as the best matching action.

Upon finishing each loop, the thread gives two high level
commands. If the currently-played signal is still the best

4

Fig. 3. The action recognition thread runs separately from the rendering
thread. It reads both buffer and recognizes the user performed action. Upon
finishing one loop, it gives one of the two high level commands to control
the character.

matching one, the character continues the current action. If
the newly matched signal is a better match, the currently-
played action is switched to the newly matched signal. Notice
that since some frames (let us say, the firstnp frames) of
the previous action have already been played, there will be
significant artifacts if we start to play the newly matched action
from the beginning. Therefore, we skip the initial part and
start playing from thenp-th frame. Using this approach, the
noticeable artifacts can be minimized and a smooth transition
is produced in most cases.

Figure 4 shows the effect of our switching method. We use
an example in which the hook punch performed by the user
is wrongly recognized as a straight punch in the beginning
and is amended to the correct hook punch in the middle.
The hand trajectories of a straight and hook punch in the
motion database are shown in Figure 4 top-left and top-right,
respectively. The blue dots represent the positions of the left
hand of a straight punch, while the red dots represent that
of a hook punch. Figure 4 lower-left shows that our system
smoothly switches the straight punch to the hook punch by
skipping the initial part. Figure 4 lower-right shows the result
if we play the hook punch from the beginning. The transition
becomes very unnatural.

C. Synchronization between the Virtual Character and the
Human Player

In this section, we explain about the operations needed
due to the desynchronization of the action by the user and
the game character. As the duration of the user’s movement
is different from that of the action in the database, either’s
movement will finish earlier. This desynchronization can cause
various problems such as wrongly recognizing the following
movement by the user. We first explain the operation when the
user’s action ends earlier than the character’s action. Next, we
explain the operation when the character’s action ends earlier
than the user’s action.

The user’s action ends earlier when the user withdraws the
performing action, or the user performs the action faster than
the action in the database. This can lead to the system wrongly
matching the user’s next action with the ending part of the
character’s current action. Fortunately, we observed that when
a human performs two actions subsequently, usually there is
a stabilizing period in between. We call this stabilizing period

Fig. 4. Action switching when the first action is concluded to be wrongly
recognized. The original actions are shown at the top. The resultant movement
is smooth if we skip some frames at the second action (lower left). Without
frame skipping, there will be significant artifacts (lower right)

the null signal, in which the magnitudes of the accelerometers
are under a threshold forβ continuous frames. When a
null signal is observed, we assume the action is finished
and terminate the action currently performed by the virtual
character. Notice that there may be artifacts when a large part
of the action is not rendered. However, this rarely happens
unless the user withdraws the current action in the middle. In
our system, we setβ to 6, which is equivalent to 1/10 second.
Figure 5a shows an example where the user’s movement
finishes earlier than the character’s action. Since we detect a
number of signals with no acceleration, which are represented
by the white boxess6 to s8, we conclude that the user action
has ended and terminates the character’s action.

Fig. 5. (a) The user action ends earlier than the rendering action. (b) The
rendering action ends earlier than the user action.

The second case of desynchronization happens when the
character’s action ends earlier than the user’s action. This can
lead to the system wrongly recognizing the ending part of
the user’s action as a new action. To avoid this situation,
whenever the rendering action is finished while the user is
performing something, we discard any forthcoming signal until
a null signal is observed, or the number of frame discarded
reaches a predefined number, which is set to20 frames (1/3
second) in our system. Figure 5b shows an example where the
character’ action finishes earlier than the user’s action. When
the accelerometer produces signals9, the character’s action
is finished. We discard the forthcoming signals and signal
s6 to s9 are not passed to the recognition thread. In terms
of animation, we keep the character keep standing until the

5

user starts the next movement and a new matching result is
generated.

D. Effect of Buffer Size and Sampling Frequency

In this section, we discuss about the appropriate buffer size
and the sampling frequency of the control signals.

The main buffer size affects the time lag between the
user and character actions, and the accuracy of the initial
action recognition. If the main buffer size is small, the virtual
character starts to act immediately after the user starts moving.
However, since the first recognition loop takes into account
only a small buffer of signals, the accuracy of the recognition
is low. On the other hand, if the buffer size is large, the time
lag between the user and character actions will be large. In
general, appropriate buffer size must be adjusted according to
the actions in the database. If the controllable actions in the
database are very different from each other in the beginning,
we can use a small main buffer. Otherwise, we will need a
larger buffer. In our boxing system, the main buffer size is set
to 6 frames (1/10 second).

The supplementary buffer size has minimal effect to the
system, unless it is unreasonably small. The major usage of the
supplementary buffer is to improve the accuracy of recognition
when more control signals are available, and it will be cleared
once the action is finished. Therefore, its size should be set
longer than the longest controllable action in the database. In
our system, we set it to be60 frames (1 second), which is
twice the size of the longest action.

We can adjust the sampling frequency to balance the
computational power and accuracy of action recognition. If
we increase the sampling rate of the control signals, we can
detect smaller changes of the signals, and thus the matching
will be more accurate. However, it will also increase the
computational load of doing the DTW. On the other hand, if
the sampling rate is decreased, matching is fast but we lose the
details of the control signals. In general, the minimal sampling
frequency depends on the accuracy of the accelerometers. With
good quality accelerometers, we can rely on each frame of
the control signal, and thus do not require high sampling
frequency. In our system, we set the frequency to be60Hz.

V. CHARACTER ANIMATION

The characters and the virtual world in our system are
created with the Open Dynamics Engine (ODE) [11]. The
body parts are modeled by capsules and blocks to reduce the
computational cost of collision detection. Whenever a collision
is detected, ODE applies repulsive force to the colliding parts
to avoid body penetration.

We implement Jakobsen’s [12] technique in the ODE to
simulate the rigid body dynamics. Each joint is considered
as a particle in a particle system, while the body parts are
linkages between the particles. In each frame, a reference
posture is obtained based on the captured action. The joints are
guided to the posture by applying external force generated by
a PD control [13]. This is particularly important during action
switching as described in Section 7, in which the reference
posture may not be continuous. Since we are using external

force to control the movements of the character, we will
always obtain smooth transitions from discontinuous reference
postures. The readers are referred to [14] for more details.

VI. EXPERIMENTS

In this section, we discuss our experiments based on a
serious boxing game.

A. Creating the Motion Database and the Interaction Graph

We captured the shadow boxing motions of a professional
boxer for around 7 minutes. The motions were segmented into
148 semantic actions, which were used to create an action level
motion graph. Based on the motion graph, we sampled states
of interaction and created an Interaction Graph. The graph
consists of 55560 nodes and 107167 edges, and was used to
control the computer players.

B. Control System

Next, we associated each character action to the control
signals and tuned the buffer size of the control signals.

We selected 13 actions from the action level motion graph as
controllable actions. They include 2 straight punches, 2 upper
cuts, 2 hook punches, 2 parries, 1 blocking and 4 movement
actions. We used the Wiimote as our accelerometer since
they are available at a reasonable price. For each controllable
action, we asked the player to mimic the action 3 times and
capture the signal with the Wiimote. We then generated a
control signal, which was associated to the controllable action,
by aligning and averaging the signal samples captured.

During run-time, both the animation frame-rate and action
recognition rate were set to60Hz. Our system can run in real-
time with a notebook computer with a Core 2 Duo P8600
(2.4GHz) CPU and 4GB of RAM. The main buffer size is set
to 6 frames (1/10 second) and the supplementary buffer size
is set to 60 frames (1 second). More analysis on buffer size
can be found at Section VI-D.

The response time of the virtual character is a sum of the
main buffer and the time required for recognition. However,
the latter is always smaller than5ms in our system, and
hence is negligible. Notice that the recognition time increases
linearly with respect to the number of controllable actions. If
the number is large, we will need to consider the recognition
time as part of the time lag.

C. Boxing Game

Here, we describe the experimental results when we applied
our algorithm to a boxing game.

In the first experiment, we tested the controllability of the
user-controlled character (Figure 6). We asked the player to
perform the controllable actions randomly. We found that our
system can accurately recognize the user’s action with very
short response. The lag was considerably shorter than most
commercial games nowadays. The accuracy was around 95%.
By careful examination, we also found that from time to
time the character switches to a correct action because of the

6

Fig. 6. The user controls a virtual character with a Wiimote. We can
achieve a high accuracy with a short control time lag based on our dual
buffer framework.

supplementary buffer, but such kind of switching is usually
unnoticeable during normal game-play.

In the second experiment, we conducted a virtual boxing
match between the user and the computer controlled character
(Figure 7). The user controls the virtual character through
Wiimote, and the Interaction Graph is used to control the
computer-controlled character. When a character is hit, we stop
the current action and insert an appropriate falling back action
based on the attack speed and direction [15]. For the user-
controlled character, any control signals from the user were
discarded during the falling back action.

Fig. 7. The user boxes with a computer controlled character, which is an
intelligent opponent controlled by the Interaction Graph [2].

D. Buffer Size and Recognition Accuracy

We recorded a series of control signals from a player,
and recognized the action with different sizes of the main
buffer. For each buffer size, the results are classified into four
groups: (1) recognized correctly (2) recognized correctly after
an unnoticeable action switching (3) recognized correctly after
a noticeable action switching (4) recognized incorrectly. (1)
and (2) are acceptable results for our system, and although (3)
is also acceptable for some games, here we employ a tougher
quality requirement and consider them as unacceptable, to-
gether with (4).

First, we recorded a series of control signals performed by
an experienced player who had played the game for more
than 2 hours. The player randomly performed the actions
for about one minute. Figure 8 shows the recognition rate

with different sizes of the buffer. The X axis represents
the number of frames of the main buffer and the Y axis
represents the percentage of the recognition rate. The green
solid line represents acceptable recognition, which is the sum
of group (1) and (2). The red solid line represents unacceptable
recognition, which is a sum of group (3) and (4). The dotted
lines give extra information about the percentage of actions
that resulted in switching. Since the player is experienced,
the rate of acceptable recognition is high, and that of action
switching is low. The accuracy drops significantly when the
main buffer size is smaller than 6 frames. Such a value
becomes a suitable trade-off between system responsiveness
(1/10 second) and accuracy (>95%).

Fig. 8. The accuracy of action recognition with the control signals from an
experienced player across different size of the main buffer.

We performed the same experiment with a novice player
who has played the game for only 20 minutes. Figure 9
shows the results. We noticed that the actions performed by
the novice player were more ambiguous, and the features
of different classes of punches were not clearly performed.
This leads to a lower recognition rate. However, even in this
case, our system still performs better than traditional single
buffer approaches thanks to the supplementary buffer and the
intermediate switching. The supplementary buffer provides
around 10% to 20% increase in the accuracy when the main
buffer alone cannot recognize the actions correctly.

Fig. 9. The accuracy of action recognition with the control signals from a
novice player across different size of the main buffer.

7

VII. D ISCUSSIONS

In this section, we provide further discussions on our
system.

When matching the user signal with the signals in the
database, instead of generating a mean signal for action match-
ing, it is possible to match with all control signal samples,
and find the most similar one. However, this is a lot more
computationally costly, and does not significantly improve the
matching accuracy, as the samples contain small variations
only. Although the extra computational cost is not significant
to high power CPU, we prefer using the mean signal such that
our algorithm can be applied in game consoles.

DTW is the most computationally costly part in the action
matching process. However, it is important to apply DTW
instead of a simpler mapping such as uniform scaling because
of the nature of the acceleration profile. For most actions,
the acceleration profile consists of the accelerating part and
the decelerating part. If the duration is not matched correctly,
the positive acceleration part may be matched to the negative
acceleration part (or vice versa), which will produce a large
difference between the two profiles. As a result, the accuracy
of the recognition decreases significantly without DTW.

We found that the signal profile can vary largely between
left handed players and right handed players. Although the
DTW eases the difficulty in matching the punching move-
ments conducted by people of different handedness, we would
suggest preparing two profiles for left and right hand players.

Our technique of motion matching shows significantly
better performance comparing to those commonly used in
accelerometer-based games. In terms of controllability, our
system has a noticeably shorter response time than popular
games such as the boxing game in the Wii Sports. Furthermore,
we observed that in the Wii Sports boxing game, once an
action is started, it will carry on until the end. It means that
the system does not have a framework to switch the action
even when the controllers are providing such information.
Another observation from the Wii Sports boxing game is that
it requires significantly longer time for synchronization, which
can increase up to seconds. On the contrary, our system can
mostly synchronize the user control and the character’s action
within 1/3 of a second.

The dual buffer framework presented in this paper is also
applicable for sensors other than accelerometers, for example,
optical trackers, magnetic trackers, and gyro sensors.

VIII. C ONCLUSION AND FUTURE WORKS

We presented a dual buffer framework for fast action recog-
nition. The main buffer stores the signals from the controllers
for fast recognition. The supplementary buffer stores extra
signals when they are available, and uses them to perform
more accurate recognition. If the initial recognition is correct,
we continue the current action. Otherwise, we switch to
a newly recognized action. Using this framework, we can
perform accurate character control with minimal control time
lag. We demonstrate this framework using an accelerometer-
based controller, and tested it with a boxing game in which the
player can box with intelligent computer controlled characters.

As a future work, we would like to enhance the system by
recognizing and modeling the details of the user performed
actions. Currently, we can only classify some specific classes
of actions, such as straight punches and upper cuts. Attributes
such as the speed and the direction are not taken into account
at the moment. We plan to make use of such data to edit the
movements such that they appear more similar to the motion
performed by the user.

Another future direction is to improve the intelligence of
the computer controlled character to enhance the realism of
the game. Currently, we apply the Interaction Graph, which is
a machine learning approach, to control the virtual character.
The control is only optimal when the opponent’s actions are
within expectation. If the user performs something unexpected,
such as continuously avoidance, the computer controlled char-
acter will incorrectly predict the user’s action and act sub-
optimally. Enabling the computer player to adapt to different
human players through a short observation of the player is an
interesting research direction.

REFERENCES

[1] H. P. H. Shum, T. Komura, and S. Yamazaki, “Simulating competitive
interactions using singly captured motions,”Proceedings of ACM Virtual
Reality Software Technology 2007, pp. 65–72, 2007.

[2] H. P. H. Shum, T. Komura, and S. Yamazaki, “Simulating interactions
of avatars in high dimensional state space,” inI3D ’08: Proceedings of
the 2008 symposium on Interactive 3D graphics and games. New York,
NY, USA: ACM, 2008, pp. 131–138.

[3] J. Chai and J. K. Hodgins, “Performance animation from low-
dimensional control signals,”ACM Transactions on Graphics, vol. 24,
no. 3, pp. 686–696, 2005.

[4] T. Shiratori and J. K. Hodgins, “Accelerometer-based user interfaces
for the control of a physically simulated character,”ACM Trans.
Graph., vol. 27, pp. 123:1–123:9, December 2008. [Online]. Available:
http://doi.acm.org/10.1145/1409060.1409076

[5] A. Treuille, Y. Lee, and Z. Popovic’, “Near-optimal character animation
with continuous control,”ACM Transactions on Graphics, vol. 26, no. 3,
pp. 7:1–7:7, 2007.

[6] J. Lee and K. H. Lee, “Precomputing avatar behavior from human
motion data,” Proceedings of 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp. 79–87, 2004.

[7] J. McCann and N. S. Pollard, “Responsive characters from motion
fragments,”ACM Transactions on Graphics (SIGGRAPH 2007), vol. 26,
no. 3, Aug. 2007.

[8] T. Graepel, R. Herbrich, and J. Gold, “Learning to fight,”Proceed-
ings of Computer Games: Artificial Intelligence Design and Education
(CGAIDE 2004), pp. 193–200, 2004.

[9] H. J. Shin and H. S. Oh, “Fat graphs: constructing an interactive
character with continuous controls,” inSCA ’06: Proceedings of the 2006
ACM SIGGRAPH/Eurographics symposium on Computer animation.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2006,
pp. 291–298.

[10] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,”ACM Transac-
tions on Graphics, vol. 21, no. 3, pp. 473–482, 2002.

[11] R. Smith, “Open dynamics engine. www.ode.org,” 2005.
[12] T. Jakobsen, “Advanced character physics,”In Game Developers Con-

ference Proceedings, pp. 383–401, 2001.
[13] V. B. Zordan and J. K. Hodgins, “Motion capture-driven simulations

that hit and react,”Proceedings of ACM SIGGRAPH Symposium on
Computer Animation, pp. 89 – 96, 2002.

[14] H. P. H. Shum, “Simulating interactions among multiple characters,”
Ph.D. dissertation, University of Edinburgh, UK, 2010.

[15] V. B. Zordan, A. Majkowska, B. Chiu, and M. Fast, “Dynamic response
for motion capture animation,”ACM Transactions on Graphics, vol. 24,
no. 3, pp. 697–701, 2005.

8

Hubert P. H. Shum Hubert P. H. Shum is a lecturer
in the University of Worcester. Before joining the
university, he worked as a post-doctoral researcher
in RIKEN Japan, as well as a research assistant in
the City University of Hong Kong. He received his
Ph. D. degree in the School of Informatics from the
University of Edinburgh, and received his M. Sc. and
B. Eng. degrees from the City University of Hong
Kong. His research interests include character ani-
mation, machine learning and physical simulations.

Taku Komura Taku Komura is currently a Lecturer
at School of Informatics, Edinburgh University, UK.
He received his B. Sc., M. Sc. and D. Sc. in
Information Science from the University of Tokyo.
His research interests include topology-based motion
synthesis and application of machine learning to
character animation.

Shu Takagi Shu Takagi is a professor in the Univer-
sity of Tokyo and a team leader in CSRP, RIKEN
Japan. He received his Doctor of Engineering from
the University of Tokyo in 1995. Since then, he had
worked as a research associate, a lecturer, as well
as an associate professor in the same university. His
research interests include fluid mechanics, computa-
tional biomechanics and medical ultrasound.

