1,580 research outputs found
Photometric variability of the LAMOST sample of magnetic chemically peculiar stars as seen by TESS
High-quality light curves from space missions have opened up a new window on
the rotational and pulsational properties of magnetic chemically peculiar (mCP)
stars and have fuelled asteroseismic studies. They allow the internal effects
of surface magnetic fields to be probed and numerous astrophysical parameters
to be derived with great precision. We present an investigation of the
photometric variability of a sample of 1002 mCP stars discovered in the LAMOST
archival spectra with the aims of measuring their rotational periods and
identifying interesting objects for follow-up studies. TESS photometry was
available for 782 mCP stars and was analysed using a Fourier two-term frequency
fit to determine the stars' rotational periods. The rotational signal was then
subtracted from the light curve to identify non-rotational variability. A
pixel-level blending analysis was performed to check whether the variability
originates in the target star or a nearby blended neighbour. We investigated
correlations between the rotational periods, fractional age on the main
sequence, mass, and several other observables. We present rotational periods
and period estimates for 720 mCP stars. In addition, we identified four
eclipsing binary systems that likely host an mCP star, as well as 25 stars with
additional signals consistent with pulsation (12 stars with frequencies above
10 d and 13 stars with frequencies below 10 ). We find that more
evolved stars have longer rotation periods, in agreement with the assumption of
the conservation of angular momentum during main-sequence evolution. With our
work, we increase the sample size of mCP stars with known rotation periods and
identify prime candidates for detailed follow-up studies. This enables two
paths towards future investigations: population studies of even larger samples
of mCP stars and the detailed characterisation of high-value targets.Comment: 30 pages, 9 figures, 1 table. Accepted for publication in the Journal
of Astronomy and Astrophysics (A&A
MOBSTER â III. HDâ62658: a magnetic Bp star in an eclipsing binary with a non-magnetic âidentical twinâ
HDâ62658 (B9pâV) is a little-studied chemically peculiar star. Light curves obtained by the Kilodegree Extremely Little Telescope (KELT) and Transiting Exoplanet Survey Satellite (TESS) show clear eclipses with a period of about 4.75 d, as well as out-of-eclipse brightness modulation with the same 4.75 d period, consistent with synchronized rotational modulation of surface chemical spots. High-resolution ESPaDOnS circular spectropolarimetry shows a clear Zeeman signature in the line profile of the primary; there is no indication of a magnetic field in the secondary. PHOEBE modelling of the light curve and radial velocities indicates that the two components have almost identical masses of about 3 M_â. The primaryâs longitudinal magnetic fieldâ©B_zâȘ varies between about +100 and â250 G, suggesting a surface magnetic dipole strength B_d = 850 G. Bayesian analysis of the Stokes V profiles indicates B_d = 650 G for the primary and B_d < 110 G for the secondary. The primaryâs line profiles are highly variable, consistent with the hypothesis that the out-of-eclipse brightness modulation is a consequence of rotational modulation of that starâs chemical spots. We also detect a residual signal in the light curve after removal of the orbital and rotational modulations, which might be pulsational in origin; this could be consistent with the weak line profile variability of the secondary. This system represents an excellent opportunity to examine the consequences of magnetic fields for stellar structure via comparison of two stars that are essentially identical with the exception that one is magnetic. The existence of such a system furthermore suggests that purely environmental explanations for the origin of fossil magnetic fields are incomplete
Development of Eosinophilic Airway Inflammation and Airway Hyperresponsiveness in Mast Cellâdeficient Mice
Mast cells are the main effector cells of immediate hypersensitivity and anaphylaxis. Their role in the development of allergen-induced airway hyperresponsiveness (AHR) is controversial and based on indirect evidence. To address these issues, mast cellâdeficient mice (W/Wââv) and their congenic littermates were sensitized to ovalbumin (OVA) by intraperitoneal injection and subsequently challenged with OVA via the airways. Comparison of OVA-specific immunoglobulin E (IgE) levels in the serum and numbers of eosinophils in bronchoalveolar lavage fluid or lung digests showed no differences between the two groups of mice. Further, measurements of airway resistance and dynamic compliance at baseline and after inhalation of methacholine were similar. These data indicate that mast cells or IgEâmast cell activation is not required for the development of eosinophilic inflammation and AHR in mice sensitized to allergen via the intraperitoneal route and challenged via the airways
Electrical Conductivity of Fermi Liquids. I. Many-body Effect on the Drude Weight
On the basis of the Fermi liquid theory, we investigate the many-body effect
on the Drude weight. In a lattice system, the Drude weight is modified by
electron-electron interaction due to Umklapp processes, while it is not
renormalized in a Galilean invariant system. This is explained by showing that
the effective mass for is defined through the current, not
velocity, of quasiparticle. It is shown that the inequality is required
for the stability against the uniform shift of the Fermi surface. The result of
perturbation theory applied for the Hubbard model indicates that as a
function of the density is qualitatively modified around half filling
by Umklapp processes.Comment: 20 pages, 2 figures; J. Phys. Soc. Jpn. Vol.67, No.
Age-dependent human beta cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling
Inadequate pancreatic beta cell function underlies type 1 and type 2 diabetes mellitus. Strategies to expand functional cells have focused on discovering and controlling mechanisms that limit the proliferation of human beta cells. Here, we developed an engraftment strategy to examine age-associated human islet cell replication competence and reveal mechanisms underlying age-dependent decline of beta cell proliferation in human islets. We found that exendin-4 (Ex-4), an agonist of the glucagon-like peptide 1 receptor (GLP-1R), stimulates human beta cell proliferation in juvenile but not adult islets. This age-dependent responsiveness does not reflect loss of GLP-1R signaling in adult islets, since Ex-4 treatment stimulated insulin secretion by both juvenile and adult human beta cells. We show that the mitogenic effect of Ex-4 requires calcineurin/nuclear factor of activated T cells (NFAT) signaling. In juvenile islets, Ex-4 induced expression of calcineurin/NFAT signaling components as well as target genes for proliferation-promoting factors, including NFATC1, FOXM1, and CCNA1. By contrast, expression of these factors in adult islet beta cells was not affected by Ex-4 exposure. These studies reveal age-dependent signaling mechanisms regulating human beta cell proliferation, and identify elements that could be adapted for therapeutic expansion of human beta cells
Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome
Soybean [Glycine max (L.) Merr.] cultivars show differences in their resistance to both the leaf scorch and root rot of sudden death syndrome (SDS). The syndrome is caused by root colonization by Fusarium virguliforme (ex. F. solani f. sp. glycines). Root susceptibility combined with reduced leaf scorch resistance has been associated with resistance to Heterodera glycines HG Type 1.3.6.7 (race 14) of the soybean cyst nematode (SCN). In contrast, the rhg1 locus underlying resistance to Hg Type 0 was found clustered with three loci for resistance to SDS leaf scorch and one for root infection. The aims of this study were to compare the inheritance of resistance to leaf scorch and root infection in a population that segregated for resistance to SCN and to identify the underlying quantitative trait loci (QTL). âHartwigâ, a cultivar partially resistant to SDS leaf scorch, F. virguliforme root infection and SCN HG Type 1.3.6.7 was crossed with the partially susceptible cultivar âFlyerâ. Ninety-two F5-derived recombinant inbred lines and 144 markers were used for map development. Four QTL found in earlier studies were confirmed. One contributed resistance to leaf scorch on linkage group (LG) C2 (Satt277; P = 0.004, R 2 = 15%). Two on LG G underlay root infection at R8 (Satt038; P = 0.0001 R 2 = 28.1%; Satt115; P = 0.003, R 2 = 12.9%). The marker Satt038 was linked to rhg1 underlying resistance to SCN Hg Type 0. The fourth QTL was on LG D2 underlying resistance to root infection at R6 (Satt574; P = 0.001, R 2 = 10%). That QTL was in an interval previously associated with resistance to both SDS leaf scorch and SCN Hg Type 1.3.6.7. The QTL showed repulsion linkage with resistance to SCN that may explain the relative susceptibility to SDS of some SCN resistant cultivars. One additional QTL was discovered on LG G underlying resistance to SDS leaf scorch measured by disease index (Satt130; P = 0.003, R 2 = 13%). The loci and markers will provide tagged alleles with which to improve the breeding of cultivars combining resistances to SDS leaf scorch, root infection and SCN HG Type 1.3.6.7
Constraints on the Ultra-High Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array
We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray
bursts (GRBs) in the data set collected by the Testbed station of the Askaryan
Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no
events that survive our cuts, which is consistent with 0.12 expected background
events. Using NeuCosmA as a numerical GRB reference emission model, we estimate
upper limits on the prompt UHE GRB neutrino fluence and quasi-diffuse flux from
to GeV. This is the first limit on the prompt UHE GRB
neutrino quasi-diffuse flux above GeV.Comment: 14 pages, 8 figures, Published in Astroparticle Physics Journa
First Constraints on the Ultra-High Energy Neutrino Flux from a Prototype Station of the Askaryan Radio Array
The Askaryan Radio Array (ARA) is an ultra-high energy ( eV) cosmic
neutrino detector in phased construction near the South Pole. ARA searches for
radio Cherenkov emission from particle cascades induced by neutrino
interactions in the ice using radio frequency antennas ( MHz)
deployed at a design depth of 200 m in the Antarctic ice. A prototype ARA
Testbed station was deployed at m depth in the 2010-2011 season and
the first three full ARA stations were deployed in the 2011-2012 and 2012-2013
seasons. We present the first neutrino search with ARA using data taken in 2011
and 2012 with the ARA Testbed and the resulting constraints on the neutrino
flux from eV.Comment: 26 pages, 15 figures. Since first revision, added section on
systematic uncertainties, updated limits and uncertainty band with
improvements to simulation, added appendix describing ray tracing algorithm.
Final revision includes a section on cosmic ray backgrounds. Published in
Astropart. Phys.
- âŠ