95 research outputs found
The Epidemiology and Pathogenesis of Kawasaki Disease
Epidemiologic and clinical features of Kawasaki Disease (KD) strongly support an infectious etiology. KD is worldwide, most prominently in Japan, Korea, and Taiwan, reflecting increased genetic susceptibility among Asian populations. In Hawaii, KD rates are 20-fold higher in Japanese ethnics than in Caucasians, intermediate in other ethnicities. The age distribution of KD, highest in children < 2 yo, lower in those < 6 months, is compatible with infection by a ubiquitous agent resulting in increasing immunity with age and with transplacental immunity, as with some classic viruses. The primarily winter-spring KD seasonality and well-documented Japanese epidemics with wave-like spread also support an infectious trigger. We hypothesize KD pathogenesis involves an RNA virus that usually causes asymptomatic infection but KD in a subset of genetically predisposed children. CD8 T cells, oligoclonal IgA, and upregulation of cytotoxic T cell and interferon pathway genes in the coronaries in fatal KD also support a viral etiology. Cytoplasmic inclusion bodies in ciliated bronchial epithelium identified by monoclonal antibodies made from oligoclonal IgA heavy chains also supports a viral etiology. Recent availability of “second generation” antibodies from KD peripheral blood plasmablasts may identify a specific viral antigen. Thus, we propose an unidentified (“new”) RNA virus infects bronchial epithelium usually causing asymptomatic infection but KD in a subset of genetically predisposed children. The agent persists in inclusion bodies, with intermittent respiratory shedding, entering the bloodstream via macrophages targeting coronaries. Antigen-specific IgA plasma cells and CD8 T cells respond but coronaries can be damaged. IVIG may include antibody against the agent. Post infection, 97–99% of KD patients are immune to the agent, protected against recurrence. The agent can spread either from those with asymptomatic primary infection in winter-spring or from a previously infected contact who intermittently sheds the agent
The transcriptional profile of coronary arteritis in Kawasaki disease
BackgroundKawasaki Disease (KD) can cause potentially life-threatening coronary arteritis in young children, and has a likely infectious etiology. Transcriptome profiling is a powerful approach to investigate gene expression in diseased tissues. RNA sequencing of KD coronary arteries could elucidate the etiology and the host response, with the potential to improve KD diagnosis and/or treatment.MethodsDeep RNA sequencing was performed on KD (n = 8) and childhood control (n = 7) coronary artery tissues, revealing 1074 differentially expressed mRNAs. Non-human RNA sequences were subjected to a microbial discovery bioinformatics platform, and microbial sequences were analyzed by Metastats for association with KD.ResultsT lymphocyte activation, antigen presentation, immunoglobulin production, and type I interferon response were significantly upregulated in KD arteritis, while the tumor necrosis factor α pathway was not differentially expressed. Transcripts from known infectious agents were not specifically associated with KD coronary arteritis.ConclusionsThe immune transcriptional profile in KD coronary artery tissues has features of an antiviral immune response such as activated cytotoxic T lymphocyte and type I interferon-induced gene upregulation. These results provide new insights into the pathogenesis of KD arteritis that can guide selection of new immunomodulatory therapies for high-risk KD patients, and provide direction for future etiologic studies
RNA-Containing Cytoplasmic Inclusion Bodies in Ciliated Bronchial Epithelium Months to Years after Acute Kawasaki Disease
Kawasaki Disease (KD) is the most common cause of acquired heart disease in children in developed nations. The KD etiologic agent is unknown but likely to be a ubiquitous microbe that usually causes asymptomatic childhood infection, resulting in KD only in genetically susceptible individuals. KD synthetic antibodies made from prevalent IgA gene sequences in KD arterial tissue detect intracytoplasmic inclusion bodies (ICI) resembling viral ICI in acute KD but not control infant ciliated bronchial epithelium. The prevalence of ICI in late-stage KD fatalities and in older individuals with non-KD illness should be low, unless persistent infection is common.Lung tissue from late-stage KD fatalities and non-infant controls was examined by light microscopy for the presence of ICI. Nucleic acid stains and transmission electron microscopy (TEM) were performed on tissues that were strongly positive for ICI. ICI were present in ciliated bronchial epithelium in 6/7 (86%) late-stage KD fatalities and 7/27 (26%) controls ages 9-84 years (p = 0.01). Nucleic acid stains revealed RNA but not DNA within the ICI. ICI were also identified in lung macrophages in some KD cases. TEM of bronchial epithelium and macrophages from KD cases revealed finely granular homogeneous ICI.These findings are consistent with a previously unidentified, ubiquitous RNA virus that forms ICI and can result in persistent infection in bronchial epithelium and macrophages as the etiologic agent of KD
Three Linked Vasculopathic Processes Characterize Kawasaki Disease: A Light and Transmission Electron Microscopic Study
Kawasaki disease is recognized as the most common cause of acquired heart disease in children in the developed world. Clinical, epidemiologic, and pathologic evidence supports an infectious agent, likely entering through the lung. Pathologic studies proposing an acute coronary arteritis followed by healing fail to account for the complex vasculopathy and clinical course.Specimens from 32 autopsies, 8 cardiac transplants, and an excised coronary aneurysm were studied by light (n=41) and transmission electron microscopy (n=7). Three characteristic vasculopathic processes were identified in coronary (CA) and non-coronary arteries: acute self-limited necrotizing arteritis (NA), subacute/chronic (SA/C) vasculitis, and luminal myofibroblastic proliferation (LMP). NA is a synchronous neutrophilic process of the endothelium, beginning and ending within the first two weeks of fever onset, and progressively destroying the wall into the adventitia causing saccular aneurysms, which can thrombose or rupture. SA/C vasculitis is an asynchronous process that can commence within the first two weeks onward, starting in the adventitia/perivascular tissue and variably inflaming/damaging the wall during progression to the lumen. Besides fusiform and saccular aneurysms that can thrombose, SA/C vasculitis likely causes the transition of medial and adventitial smooth muscle cells (SMC) into classic myofibroblasts, which combined with their matrix products and inflammation create progressive stenosing luminal lesions (SA/C-LMP). Remote LMP apparently results from circulating factors. Veins, pulmonary arteries, and aorta can develop subclinical SA/C vasculitis and SA/C-LMP, but not NA. The earliest death (day 10) had both CA SA/C vasculitis and SA/C-LMP, and an "eosinophilic-type" myocarditis.NA is the only self-limiting process of the three, is responsible for the earliest morbidity/mortality, and is consistent with acute viral infection. SA/C vasculitis can begin as early as NA, but can occur/persist for months to years; LMP causes progressive arterial stenosis and thrombosis and is composed of unique SMC-derived pathologic myofibroblasts
- …