2,026 research outputs found

    IUE absorption studies of broad- and narrow-line gas in Seyfert galaxies

    Get PDF
    The interstellar medium of a galaxy containing an active nucleus may be profoundly affected by the high energy (X-ray, EUV) continuum flux emanating from the central source. The energetic source may photoionize the interstellar medium out to several kiloparsecs, thereby creating a global H II region. The International Ultraviolet Explorer (IUE) satellite has attempted to observe in several Seyfert galaxies (NGC 3516, NGC 4151, NGC 1068, 3C 120) the narrow absorption lines expected from such global H II regions. Instead, in two of the galaxies (NGC 3516, NGC 4151) broad, variable absorption lines at C IV lambda 1550, N V lambda 1240, and Si IV lambda 1400 were found, as well as weaker absorption features at O I lambda 1302 and C II lambda 1335. These features swamp any possible global H II region absorption. Such broad absorption features have previously been observed in IUE data, but their origin is still not well understood

    The Evolution of the Effective Equation of State of the IGM

    Get PDF
    We develop a method to extract the "effective equation of state" of the intergalactic medium from the doppler b parameter distribution of the low-density Lyman-alpha forest. We test the method on numerical simulations and then apply it to published observations of the Lyman-alpha forest at redshifts z from 0 to 4. We find that the effective equation of state is close to isothermal at redshift z=3, indicating that a second reheating of the IGM took place at z=3. This reheating can plausibly be identified with the reionization of HeII observed to occur at z about 3.Comment: Revised version accepted for publication in ApJ. Vol. 534 May 1, 2000 (in press); 32 pages, 13 figures, 7 table

    Where Do Pitcher-Leafed Ash Trees Grow?

    Get PDF
    n/

    The Metallicity of Intergalactic Gas in Cosmic Voids

    Full text link
    We have used the Hubble/STIS and FUSE archives of ultraviolet spectra of bright AGN to identify intergalactic Lya absorbers in nearby (z < 0.1) voids. From a parent sample of 651 Lya absorbers, we identified 61 void absorbers located more than 1.4/h_70 Mpc from the nearest L* or brighter galaxy. Searching for metal absorption in high-quality (S/N > 10) spectra at the location of three diagnostic metal lines (O VI 1032, C IV 1548, Si III 1206), we detected no metal lines in any individual absorber, or in any group of absorbers using pixel co-addition techniques. The best limits on metal-line absorption in voids were set using four strong Lya absorbers with N(H I) > 10^{14} cm^-2, with 3-sigma equivalent-width limits ranging from 8 mA (O VI), 7-15 mA (C IV), and 4-10 mA (Si III). Photoionization modeling yields metallicity limits Z < 10^{-1.8+/-0.4} Z_sun, from non-detections of C IV and O VI, some 6 times lower than those seen in Lya and OVI absorbers at z < 0.1. Although the void Lya absorbers could be pristine material, considerably deeper spectra are required to rule out a universal metallicity floor produced by bursts of early star formation, with no subsequent star formation in the voids. The most consistent conclusion derived from these low-z results, and similar searches at z = 3-5, is that galaxy filaments have increased their mean IGM metallicity by factors of 30-100 since z = 3.Comment: Accepted for ApJ, 8 pages including Fig 1a,

    A polarized neutron-scattering study of the Cooper-pair moment in Sr2RuO4

    Full text link
    We report a study of the magnetization density in the mixed state of the unconventional superconductor S2RuO4. On entering the superconducting state we find no change in the magnitude or distribution of the induced moment for a magnetic field of 1 Tesla applied within the RuO2 planes. Our results are consistent with a spin-triplet Cooper pairing with spins lying in the basal plane. This is in contrast with similar experiments performed on conventional and high-Tc superconductors.Comment: Submitted to Physical Review Letter

    The Metagalactic Ionizing Radiation Field at Low Redshift

    Get PDF
    We compute the ionizing radiation field at low redshift, arising from Seyferts, QSOs, and starburst galaxies. This calculation combines recent Seyfert luminosity functions, extrapolated ultraviolet fluxes from our IUE-AGN database, and a new intergalactic opacity model based on Hubble Space Telescope and Keck Ly-alpha absorber surveys. At z = 0 for AGN only, our best estimate for the specific intensity at 1 Ryd is I_0 = 1.3 (+0.8/-0.5) x 10^-23 ergs/cm^2/s/Hz/sr, independent of H_0, Omega_0, and Lambda. The one-sided ionizing photon flux is Phi_ion = 3400 (+2100/-1300) photons/cm^2/s, and the H I photoionization rate is Gamma_HI = 3.2 (+2.0/-1.2) x 10^-14 s^-1 for alpha_s = 1.8. We also derive Gamma_ HI for z = 0 - 4. These error ranges reflect uncertainties in the spectral indexes for the ionizing EUV (alpha_s = 1.8 +/- 0.3) and the optical/UV (alpha_UV = 0.86 +/- 0.05), the IGM opacity model, the range of Seyfert luminosities (0.001 - 100 L*) and the completeness of the luminosity functions. Our estimate is a factor of three lower than the most stringent upper limits on the ionizing background (Phi_ion < 10^4 photons/cm^2/s) obtained from H-alpha observations in external clouds, and it lies within the range implied by other indirect measures. Starburst galaxies with a sufficiently large Lyman continuum escape fraction, f_ esc > 0.05, may provide a comparable background to AGN, I_0 (z=0) = 1.1 (+1.5/-0.7) x 10^{-23). An additional component of the ionizing background of this magnitude would violate neither upper limits from H-alpha observations nor the acceptable range from other measurements.Comment: 30 pages, 9 figures, accepted for Astronomical J. (Oct. 1999

    Development of Sorghum (Sorghum bicolor (L.) Moench) Endosperm in Varieties of Varying Hardness

    Get PDF
    Factors responsible for grain hardness in sorghum are not well understood. Therefore, a study was undertaken to observe differences in the developmental processes of three sorghum varieties which vary in endosperm texture: hard, intermediate, and soft. Grain samples were collected at 5 day intervals beginning at 5 days after half-bloom (DAHB) until physiological maturity (40 DAHB) and prepared for viewing with scanning electron microscopy and transmission electron microscopy. Comparisons were made between vitreous and floury endosperm portions of each variety and among the three varieties. The major difference between vitreous and floury endosperm was the degree to which the protein matrix was present and continuous. The protein matrix which surrounds the starch granules forms at approximately 20 DAHB. The proportion of cells in the endosperm with a continuous protein matrix corresponds to the proportion of vitreous endosperm in the mature kernel. A similar sequence of development was observed in the hard, intermediate, and soft varieties. however, the harder varieties appeared to develop faster than the softer varieties. Differences between hard and soft varieties were visible as early as 15 DAHB. In the early stages of endosperm development, the hard variety had a higher concentration of protein bodies in the outer endosperm than the softer varieties
    corecore