314 research outputs found

    Gas-liquid two-phase flows in double inlet cyclones for natural gas separation

    Get PDF
    The gas-liquid two-phase flow within a double inlet cyclone for natural gas separation was numerically simulated using the discrete phase model. The numerical approach was validated with the experimental data, and the comparison results agreed well with each other. The simulation results showed that the strong swirling flow produced a high centrifugal force to remove the particles from the gas mixture. The larger particles moved downward on the internal surface and were removed due to the outer vortex near the wall. Most of the tiny particles went into the inner vortex zones and escaped from the up-outlet. The swirling flow was concentric due to the design of the double inlet for the cyclonic separator, which greatly improved the separating efficiency. The separating efficiency was greater than 90% with the particle diameter of more than 100 μm

    An exact solution of spherical mean-field plus orbit-dependent non-separable pairing model with two non-degenerate j-orbits

    Get PDF
    An exact solution of nuclear spherical mean-field plus orbit-dependent non-separable pairing model with two non-degenerate j-orbits is presented. The extended one-variable Heine-Stieltjes polynomials associated to the Bethe ansatz equations of the solution are determined, of which the sets of the zeros give the solution of the model, and can be determined relatively easily. A comparison of the solution to that of the standard pairing interaction with constant interaction strength among pairs in any orbit is made. It is shown that the overlaps of eigenstates of the model with those of the standard pairing model are always large, especially for the ground and the first excited state. However, the quantum phase crossover in the non-separable pairing model cannot be accounted for by the standard pairing interaction.Comment: 5 pages, 1 figure, LaTe

    Implementation of 3D graphic editor

    Get PDF
    In this report, the implementation of a 3D graphic editor is provided with C++ language and OpenGL API. The functionalities and features in the system of this project contain documenting 3D graphic objects, dynamically creating multiple windows and subwindows, and manipulating OpenGL features, such as, lighting, colors, solid and wire mesh states. A hierarchical data structure is built to enable import and export assembled object data. The application of building graphic objects shows that the system performs its functionalities

    Clustered microRNAs' coordination in regulating protein-protein interaction network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs), a growing class of small RNAs with crucial regulatory roles at the post-transcriptional level, are usually found to be clustered on chromosomes. However, with the exception of a few individual cases, so far little is known about the functional consequence of this conserved clustering of miRNA loci. In animal genomes such clusters often contain non-homologous miRNA genes. One hypothesis to explain this heterogeneity suggests that clustered miRNAs are functionally related by virtue of co-targeting downstream pathways.</p> <p>Results</p> <p>Integrating of miRNA cluster information with protein protein interaction (PPI) network data, our research supports the hypothesis of the functional coordination of clustered miRNAs and links it to the topological features of miRNAs' targets in PPI network. Specifically, our results demonstrate that clustered miRNAs jointly regulate proteins in close proximity of the PPI network. The possibility that two proteins yield to this coordinated regulation is negatively correlated with their distance in PPI network. Guided by the knowledge of this preference, we found several network communities enriched with target genes of miRNA clusters. In addition, our results demonstrate that the variance of this propensity can also partly be explained by protein's connectivity and miRNA's conservation.</p> <p>Conclusion</p> <p>In summary, this work supports the hypothesis of intra-cluster coordination and investigates the extent of this coordination.</p

    Characterization of EndoTT, a novel single-stranded DNA-specific endonuclease from Thermoanaerobacter tengcongensis

    Get PDF
    EndoTT encoded by tte0829 of Thermoanaerobacter tengcongensis binds and cleaves single-stranded (ss) and damaged double-stranded (ds) DNA in vitro as well as binding dsDNA. In the presence of a low concentration of NaCl, EndoTT cleaved ss regions of damaged dsDNA efficiently but did not cleave DNA that was entirely ss or ds. At high concentrations of NaCl or MgCl2 or ATP, there was also specific cleavage of ssDNA. This suggested a preference for ss/ds junctions to stimulate cleavage of the DNA substrates. EndoTT has six specific sites (a–f) in the oriC region (1–70 nt) of T. tengcongensis. Substitutions of nucleotides around site c prevented cleavage by EndoTT of both sites c and d, implying that the cleavage specificity may depend on both the nucleotide sequence and the secondary structure of the ssDNA. A C-terminal sub-fragment of EndoTT (residues 107–216) had both endonucleolytic and DNA-binding activity, whereas an N-terminal sub-fragment (residues 1–110) displayed only ssDNA-binding activity. Site-directed mutations showed that G170, R172 and G177 are required for the endonuclease activity of EndoTT, but not for DNA-binding, whereas D171, R178 and G189 are partially required for the DNA-binding activity

    A Novel Cloud Removal Method Based on Ihot and the Cloud Trajectories for Landsat Imagery

    Get PDF
    Cloud removal is significantly needed for enhancing the further utilization of Landsat imagery, since such optical remote sensing satellite images are inevitably contaminated by clouds. Clouds dynamically affect the signal transmission due to their different shapes, heights, and distribution. Generally, pixel replacement is the only and common method used to remove thick opaque clouds, and radiometric correction techniques has been widely adopted to remove the thin clouds. However, no methods can remove both thick and thin clouds at the same time. In this paper, a new method is proposed based on fitting “trajectory” of cloudy pixels with the help of IHOT spatially charactering clouds for pixel correction, which considers signal transmission including not only the additive reflectance from the clouds but also the energy attenuation when solar radiation passes through them. The experimental results show that the proposed approach performs effective removal for thick and thin clouds, and possesses the highest accuracy with the reference image, which can restore land cover information accurately
    corecore