Metadata, citation and similar papers at core.ac.uk

Provided by Concordia University Research Repository

INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UM films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

https://core.ac.uk/display/211506698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Implementation of 3D Graphic Editor

Shuli Yang

A Major Report
In
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

August 2002

©Shuli Yang, 2002

i+l

o Canada o Canada.
- citions el
395 Wellington Strest 385, rus Wellington
Ottawa ON KK1A ON4 Ouawa ON K1A ON4
Canada Canada Your fis Votre réldrence
Our s Nowe rédivence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-72948-6

Abstract

Implementation of 3D Graphic Editor

Shuli Yang

In this report, the implementation of a 3D graphic editor is provided with C++ language
and OpenGL API. The functionalities and features in the system of this project contain
documenting 3D graphic objects, dynamically creating multiple windows and
subwindows. and manipulating OpenGL features. such as, lighting, colors. solid and wire
mesh states. A hierarchical data structure is built to enable import and export assembled
object data. The application of building graphic objects shows that the system performs

its functionalities.

- i1l -

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor, Prof. Peter
Grogono, for his kind agreement to my initial motivation and proposal. Subsequently his
enthusiastic support and valuable guidance gave me an excellent chance to explore the state of the

art technology for this project. Without his kind support | could not finish it.

Second I would like to express my sincere thanks to my partner. Ms. Zhaoxia Liu. for her

contribution to this project — described in the design of a 3D Graphics Editor.

Finally, I would like to thank all people who provided help and support for my project.

-iv -

Table of contents

Chapter 1: INtrodUCHIONccvomiiiieeeeee ettt 3
1.1 PrOJECE AR c...coocenceectencereecascascescnecnsess e ssae s ssas s sien 3
1.2 ProjEct TaASKS........coveeereeeeeeneceeensecesenccacnensssssssesmmresss s sssresissssssssasssasssasess 4
1.3 The Organization of The Project ... 4

Chapter 2: Object-Oriented TeChnOlOgYo.ovoveieemeiiiieenes 6
2.1 Object-Oriented MOdElingcocucuecmcecmimireeeeeieeereessnie s 6
2.2 Object-Oriented DESIZNccovcumeuemmiuecmeiniairnesie e ssessiesssssssssasssssisess 7
2.3 Object-Oriented Implementation.............cccooioiiencinnrinnenniseeciaenne 8

Chapter 3: OpenGL APL.....c.co ittt 11
3.1 GL LIDIAIY oottt ssssnsse s st 11
3.2 GLU LIDIATY ...ttt ettt seis 13
3.3 GLUT LIDIATY ...ttt ssee st s sseane 14

3.3.1 Initialize and Create @ Windowcc.cocecimmmiininnnieccneeeccceccnne 14
3.3.2 Handle Window and Input EVents ... IS
3.3.3 Load the Color Mapc..coeeieineencerieneccirntiiere et IS
3.3.4 Initialize and Draw 3D Graphic Objects........ccccommmirmirmminneeieeeenee 15
3.3.5 Manage a Background ProcCessocoeemeeeumemmiinnenncncnnccciiicicnee 16
3.3.6 RUN the PrOraMi........ccouiiimiiiinnirienieeree ettt 16

Chapter 4: System Implementation..............ocueuiieeineeieinie e 17
4.1 C++ Language for System Implementations...........c.ccoooeooeeneineenccnncce 17
4.2 OpenGL API for System Implementations..............ccoocremcircnccunne. 17

B.2.1 GL LIDIATY oo eeeeossessemsesssseesssssenesssssessssesssesssssssssssnessssasseoees 18
4.2.2 GLU LiDIArY....cceeoeeeeeeeeteerceneeresceeteesessesnenst e ssasesssasbess et esesesesesassnens 18
4.2.3 GLAUX LIBIary.....cccceeeeeeeeeeceececcescesisistsree st senesessessnsassesscsseses 18
4.2.4 GLUT LIDIArY ..ocucoeeeeeeececereneteteceescneeenestsesese s s ssssenssesssssssnsssssencsssss 19
4.3 Glut Framework AppliCation............ccoeecoemiccinerinrinniesiesissssscseieeseeeaee 19
4.3.1 System Start Implementationccooveemerieeienieinenneeeteie et 19
4.3.2 OpenGL GLUT Framework and C++ Languageccceeeenmevcecnnciinnnnnnes 20
4.3.3 OpenGL Windows in the System.........coommeminnencencine 21
4.4 View-Document-Control Implementations.............coooeveninnencinecnenns 21
4.4.1 View Class Implementationcocooeeierieieernieneninnscncscsenecsiessencenes 21
4.4.2 Document Class Implementationcc.cooeieeriiienenniineciiiiicinene 22
4.4.3 Control Class Implementation..............coceoeumememerereiennecennnescsenecessenne 24
4.4.3.1 Window Menu CONntrolcoooecveecceneeiininieiireneseeneesec et escnnnnas 25
4.4.3.2 MOUSE CONIOL.......cueoriererietreiereneeeeeeeetesreeste s et s sess et e essesssasas 26
4.4.3.3 Keyboard Key CONtrolc.oimiimineieiieinesecesecennsesacinsassennenenes 26
4.4.3.4 Special Key Control ...ttt 27
4.5 LIGNHNEG...... oot ceececsecac s st 28
4.6 GraphicCs ODJECLS......c.cumeremeencmncimiseasenase s cssse s ssnsses 30
4.6.1 Class CGLODJECEc.cc.everreececeinrieneseeeereserenensaestesee st stsssssssansaseas 30
4.6.2 Children Classes........ccooueeeieeerererrntereticseresneestneesstessesssesssesssstscenssssssesnes 31

4.6.3 Class ASSEMDIYoooceeeeciiireree et 31

4.7 Import and Export Data Files ... 33
4.7.1 Read and Write File Namescccooveerceeenviirieicncicceneercneee st 33

4. 7.2 Read Data Filesooomeeeemmeeeeeeeeeceeeeccctnitrne sttt 33

4.7.3 Write Data FIIEScuoeeieeieceeeeececcecc st snn e 34

4.8 Structure Abstract Type Definitions..........ccoonecneeeeene 35

4.9 Window Item Parameter Enumerations..........ccooenercnninnienenn. 36
Chapter 5: 3D Graphics Editor — Application Result............ccooneioeiiimciiiiiienn 38
5.1 StAMt SYSIEIM ...ooceereeeeecerrcececemce e asss s s nens 38
5.2Creating A Table ... 40

5.3 Creating A CRair ...t st 42

5.4 Creating A Light ...t 42

5.5 Assembly the Created ObJECtS ... 43

5.6 Create A CUP ..ot sesee st 44

5.7 Assemble the Cup and Table-Chair-Light objects...........coovonrinreenncc. 45

5.8 Create Multiple Windowscccoocrmiimiiineeieeseniese s 46

5.9 Global Environment and Individual Object features.......................... 51
Chapter 6: CONCIUSION.........ccmiuiueerincieietcce ettt et 53
6.1 Experiences on Object-Oriented Programming............ccooeccvomeeeccrinnece. 53

6.2 FUITRET WOTK ..ot sas s s 54
BiblIOZIAPRYceceeereeeeceiccctectrcc st et s 55

Chapter 1: Introduction

OpenGL has widely been used to implement computer graphics and animation
applications [PG98], CAD engineering application, game development, virtual physical
reality and real-time visual systems [RW96]. It is powerful for rendering computer
graphics in various system platforms. However, the libraries in OpenGL are written by C
language and not object-oriented (OO). Object-Oriented technology has dominated
industry software development for many years, OO technology gives many benefits to
human to develop a software product, and it contains effective methodologies to build
software products, such as modeling, analysis, design and implementation. Therefore, in
this project, some functions in OpenGL are realized by OOP so that the functions can be
easily reused, inherited and modified. The C++ is a popular OO Language and is chosen
to implement the project.

This project is designed as a system of computer graphics editor for creating and editing
3D graphics, creating multiple windows and performing OpenGL features. In this report,
we present the implementation of 3D graphics editor. The system design is based on
object-oriented techniques, and documented in the report [ZXL]: “design of 3D graphics

editor”.

1.1 Project Aim

The project is to develop 3D computer graphic editor tools with multiple windows. This
system is an OpenGL framework application, and it is implemented with object-oriented
technology, that is, the system analysis, architecture, design and implementation follow

this technology. As we consider the system emphasizing graphics edition, we have the

-3-

functionalities to import and export the graphics object data. Therefore, some primitive
3D graphics components are built, and their shapes and positions can be changed so that a

complex 3D scenes can be built.

1.2 Project Tasks

The project tasks consist of the technologies used and the functionalities implemented.

e The project will be designed and implemented by using object-oriented technology
and object-oriented programming language, C++.

e The system of the project is based on OpenGL APL

o The system is able to create and close windows dynamically.

e Ten solid primitive graphics components are built.

e Ten wire primitive graphics components are built.

e The system is able to import and export graphics object data files.

e The system can perform graphics features, such as, lighting, transformations, etc.

e Combining with the above functionalities, the system realizes its function to edit 3D

computer graphics.

1.3 The Organization of The Project

This project is for building a 3D graphics editor. It is designed and implemented by using
object-oriented technology and C++ language with OpenGL APIL. The user can use the
application to create and edit 3D graphics objects and view the objects from multiple

windows. The graphics objects can be created with the assemblies in a hierarchical

-4-

structure. The consideration of the project is to present an Object-Oriented approach to
build the composite and complex graphical objects by using the primitive graphics
components. We classify the OpenGL, GLU, GLAUX and GLUT functionalities on
various aspects in the system of the project, such as GLUT window functions, GLU view
function, AUX for 3D graphics representation, and OpenGL basic functions for global
environment features and individual object features, such as, lighting, color,

transformation, etc.

Chapter 2: Object-Oriented Technology

Object-oriented technology can roughly be classified to object-oriented modeling, object-
oriented design and object-oriented implementation. It provides a practical, productive
way to develop software for most practical application projects, and it makes software
products that are easily reused and maintained. Traditional software development is
mainly about functions and procedures, and it is not concerned with real world object
structure. Object-oriented technology presents a powerful approach to real world objects,
such as object concepts, attributes and behaviors, and makes software development more

objective and effective.

2.1 Object-Oriented Modeling

Modeling is a critical part in software development [BRJ99]. OO technology can control
a complexity of large-scale software system because of the modeling principle. The
principle of modularity ensures that a complex and large system should be decomposed
into many modules, in which a tight cohesion between components in a module and a
loose coupling between modules has to be ensured. According to the modeling principle,
we break a complex and large system into a set of modules so that each module is

relatively small and simple, and the interactions among modules are relatively simple.

Object-oriented modeling is more concerned with aspects of the entire system and also
the components used for building systems. Object-oriented modeling contains structural

modeling, behavioral modeling and architectural modeling.

2.2 Object-Oriented Design

From a design point of view, there are several aspects, data abstraction, encapsulation,
inheritance and polymorphism, to be considered with object-oriented technology
[BRJ99]. The processes for working on object-oriented design are the analysis of
software requirements, system architecture design for the whole system, subsystem

design and detail design for the individual components.

e Abstraction models the system and consists of making the essential, inherent aspects
of an entity, and it separates the essential from the nonessential characteristics of an
entity. Abstraction classifies and groups the data of the system into the objective type;
the result is a simpler but sufficiently accurate approximation of the original entity,

obtained by removing or ignoring the nonessential characteristics.

e Encapsulation realize information hiding, a client doesn’t need know how a service is
done but the service contract while using the service. If the clients know nothing
beyond the contractual interface, implementation can be modified without affecting
the clients, so long as the contractual interface remains the same. Tightly cohesive
components should be encapsulated as a module, and a loose coupling between

modules is necessary.

e Inheritance is also the essential part to build a system with object-oriented
technology, and it reuses the system components in a hierarchical structure. It gets the

encapsulation of data and behaviors to be more refined in multiple levels. Inheritance

catches up with the real world object feature and makes object-oriented technology to

be better understandable for the software development of the software industry.

e Polymorphism means that the same operation may behave differently on different
modules and two operations have the same syntax in one module. Polymorphism is

also important to schedule the system with object-oriented design.

2.3 Object-Oriented Implementation

Object-oriented programming (OOP) dominates software development in the software
industry [BRJ99]. The reason for this is that the real software projects are becoming more
and more complex and large, and method of procedure programming cannot fit for such
software, but OOP provides an organizational method for developing the complex and
large computer systems. The framework in object-oriented design and programming is a
new technique for developing extensible systems. It makes it easier to design reliable and
reusable application system. Such frameworks can also improve the documentation and

maintenance of existing systems.
Object-oriented programming has the facilities to develop a modern software product.

e Object-oriented programs tend to be written in terms of real-world objects, not
internal data structures. This makes them somewhat easier to understand by
maintainers and the people who have to read your code -- but it may make it harder

for you as the initial designer. Identifying objects in a problem is a challenge.

Object-oriented programs encourage encapsulation -- details of an objects
implementation are hidden from other objects. This keeps a change in one part of the

program from affecting other parts, making the program easier to debug and maintain.

Object-oriented programs encourage modularity. This means that pieces of the
program do not depend on other pieces of the program. Those pieces can be reused in

future projects, making the new projects easier to build.

Corresponding to the object-oriented design, OOP in C++ language also has the features

of abstraction, encapsulation, inheritance and polymorphism.

a.

In OOP, we use struct and class to define the abstraction types. It aggregates the data

to be one data type and builds the type to be reused conveniently.

Encapsulation is the basic feature to implement OOP codes. We realize the
implementation of software product in module form. Its mechanism binds together
code and the data it manipulates, and keeps both safe from outside interference and
misuse. When code and data are linked together in this fashion, an object is created.
In other words, an object is the device that supports encapsulation. Within an object,
code, data, or both may be private to that object or public. Private code or data is
known to and accessible only by another part of the object. That is, private code or
data may not be accessed by a piece of the program that exists outside the object.
When code or data is public, other parts of program can access it even though it is
defined within an object. Typically, the public parts of an object are used to provide a

controlled interface to the private elements of the object.

c. Inheritance is the process by which one object can acquire the properties of another
object. This is important because it supports the concept of classification. If we think
about it, most knowledge is made manageable by hierarchical classifications. For
example, a red apple is part of the classification apple, which in tumn is part of fruit
class, which is under the large class food. Without the use of classifications, each
object would have to define explicitly all of its characteristics. However, through the
use of classifications, an object need only define those qualities that make it unique
within its class. It is the inheritance mechanism that makes it possible for one object
to be a specific instance of a more general case. Inheritance is an important aspect of

object-oriented programming.

d. Object-oriented programming languages support polymorphism. Polymorphism is the
ability by which a method can be executed in more than one way, depending on some
arguments and returns. When a client class sends a message, the client class doesn’t
need to know the class of the receiving instance. The client class for a specific event
only provides a request, while the receiver knows how to perform this event. The
polymorphism characteristic sometimes makes it uncertain at compile time, to
determine which class an instance belongs to and thus to decide which operation to
perform. Polymorphism allows a programmer to provide the same interface to

different objects.

-10-

Chapter 3: OpenGL API

OpenGL is not a programming language. It is a C runtime library, which provides some
prepackaged functionality. We classify OpenGL API into the OpenGL, GLU, GLAUX
and GLUT functionalities on various aspects in the system of the project, such as, GLUT

window functions, GLU view function, AUX for 3D graphics representation [MJT99].

3.1 GL Library

OpenGL GL library provides the basic functionalities for displaying and manipulating 2D
and 3D graphic objects, such as, defining light, glLight(); object color, glColor(); and

transformations, glTranslate(), glRotate() and glScale().

e OpenGL data types

To make OpenGL code more portable for various platforms, OpenGL defines its own

data types. These data types map to normal C language data types.

OpenGL Data Type | Internal Representation | Defined as C type
Glbyte 8-bit integer Signed char
Glshort 16-bit integer Short

Glint, Glsizi 32-bit integer Long
Glfloat 32-bit floating Float
Gldouble 64-bit floating Double
Glubyte 16-bit unsigned Integer | Unsigned char

-11 -

Glboolean 16-bit unsigned Integer | Unsigned char

Glushort 32-bit unsigned Integer | Unsigned short

Gluint, Glenum 32-bit unsigned Integer | Unsigned long

Glbitfield 32-bit unsigned Integer | Unsigned long

¢ Function naming convention
OpenGL functions follow following naming convention:
a. First which library the function - library prefix
b. Second all functions have a root — root command
c. Third pair number to specify — number of arguments

d. Fourth pair type to specify — type of arguments

For example,

Root Command | Type of Arguments

Number of Argument

Library prefix

e GL library functionalities

The OpenGL GL library has the basic graphic environment and display functions:

-12-

a. Lighting item: enable light, call glEnable(GL_LIGHTING) and
glEnable(GL_LIGHTO), and set the light properties, such as, ambient, diffuse,

specular, spot light parameters.

b. Transformations: defining translation, rotation and scale.

c. Specifying the functionalities for geometric rendering.

d. Setting window view port.

e. Setting window client environments, such as, object color, background color and
other attributes.

f. Texture mapping process command functions.

g. OpenGL text displaying.

h. Clearing buffers, such as, color, depth, accumulation and stencil.

3.2 GLU Library

GLU is the OpenGL Utility Library. It is an extension of OpenGL and supports higher-

level operations. GLU functions are used to manipulate the transformation matrices of

model, view and projection, surface tessellations, quadratic surface rendering and etc.

Mipmapping and image scaling with the functions, gluBuildiDmipmaps(),
gluBuild2Dmipmaps() and gluScalelmage()

Matrix transformations, gluOrth2D(), gluPerspective(), gluLookAt(), gluProject(),
gluUnProject() and etc.

Nurbs surfaces and polygon tessellations, gluNurbsSurface(), gluTessCallback(), and
etc.

Quadratic surfaces, gluCylinder(), gluShpere(), gluDisk(), and etc.

-13-

3.3 GLUT Library

GLUT is the OpenGL Utility Toolkit [RW96] It is an extension of OpenGL and
implements a simple windowing application programming interface (API) for OpenGL.
GLUT makes it considerably easier to learn about and explore OpenGL programming.
GLUT provides a portable API so you can write a single OpenGL program. The

following sections describe the features provided by GLUT.

3.3.1 Initialize and Create a Window

For GLUT window management, you must specify the window environment

characteristics, single-buffered or double-buffered, and the color types, RGGA or color

indices. The functions of GLUT window application can be used to run the application.

e Initialize GLUT library, first call the function, glutlnit(). The function also processes
command line options.

e We need to call glutDisplayMode() procedure to specify the display ,odde for a
window. You must first decide whether you want to use an RGBA or color index
color model.

e Create window by calling glutCreateWindow() or glutCreateSubWindow() to open a
window or a subwindow in its parent window. Before creating a window, you can set
the window size and location by calling glutlnitWindowSize() and
glutWindowPosition().

e Further manipulation by calling glutGetWindow(), glutSetWindow(), glutSetWindow

-14-

Title(), glutSeticonTitle(), glutPositionWindow(), glutReshapeWindow(), glutPop
Wiadow(), glutPushWindow(void), glutlconifyWindow(), glutShowWindow(),

glutHideWindow().

3.3.2 Handle Window and Input Events

For GLUT framework application system to interact with the user, it handles the window

and input events by using the callback functionalities.

e The glutDisplayFunc() procedure is the first and most important event callback
function. A callback function is one where a programmer-specified routine can be
registered to be called in response to a specific type of event.

e Window resizing and moving, we need to call the function, glutReshapeFunc() to
reset the viewport.

e Mouse event by calling glutMouseFunc() and glutMotionFunc() to handle the mouse
events.

e For keyboard events, the system calls the function, glutKeyboardFunc() to handle to
keyboard key events, and glutSpecialFunc() to handle keyboard special key events.

e Redraw window graphics, the system always uses the function, glutPostRedisplay().

3.3.3 Load the Color Map
GLUT provides a routine to load a single index color with an RGB value, the system uses

the function, glutSetColor().

3.3.4 Initialize and Draw 3D Graphic Objects

-15-

For drawing some primitive graphic objects, GLUT library provides some objects, such

as, cube, cone, sphere, torus, teapot, and so on.

3.3.5 Manage a Background Process
For making an animation by a background process, the function glutldleFunc() registers a

callback function provided by the user.

3.3.6 Run the program

GLUT enters a loop in which events are processed as they occur until the user signals that

the program is to be terminated.

-16 -

Chapter 4: System Implementation

The system is implemented by using C++ language combined with OpenGL API, and it
is a GLUT framework application. The implementation is intended to realize creating
multiple windows dynamically, making the application be an editor of 3D graphics

objects and building the system in object-oriented style with the OpenGL API base.

4.1 C++ Language for System Implementations

As we know, C++ language supports object-oriented programming. In the system
implementation, we adopt the pure C++ language for coding the project. The most
important parts are to organize C language style OpenGL API to object-oriented style,
especially, for the callback functions in GLUT library. We create a class named
CGlutFramework to involve all these callback functions as static operation members, as
It is the same as we implement callbacks to C functions. Static member functions do not
need an object to be invoked on and thus have the same signature as a C function with the
same calling convention, calling arguments and return type. CGlutFramework plays the

role of a pattern to connect creating multiple windows and makes the code much simpler.

4.2 OpenGL API for System Implementations

OpenGL API is very powerful and popular base library that facilitates the development of
many advanced applications, such as, industry 3D graphics design, game development,
virtual physical reality application. OpenGL API has several parts of libraries, such as,

gl.h, glu.h, glaux.h and glut.h.

-17-

4.2.1 GL Library

OpenGL functions all follow a naming convention that tells users which library the
function is from, and often how many and what type of arguments the function takes. All
OpenGL functions take the following format:
<Library prefix><Root command><Optional argument count><Optional argument type>
For example: glColor3{(...);
OpenGL use the prefix gl and initial capital letters for each word making up the function
name and this example with the suffix 3f takes three floating-point arguments.
Where :

gl : gl library

Color : RootCommand

3 : Number of arguments
f : Type of arguments
4.2.2 GLU Library

The OpenGL Utility Library (GLU) contains several routines that use lower-level
OpenGL functions to perform such tasks as setting up matrices for specific viewing

orientations and projections, performing polygon tessellation, and rendering surfaces.

4.2.3 GLAUX Library

-18 -

The OpenGL Auxiliary Library (AUX) was created to facilitate the learning and writing
of OpenGL programs without being distracted by the minutiae of user’s particular
environment. A set of core AUX functions is available on nearly every implementation of
OpenGL. Other functions draw some complete 3D figures as wire mesh or solid objects.
By using the AUX library to create and manage the window and user interaction, and
OpenGL to do the drawing, it is possible to write programs that create fairly complex

renderings. [MJT99]

4.2.4 GLUT Library

GLUT is the OpenGL Utility Toolkit, a window system independent toolkit for writing
OpenGL programs. It implements a simple windowing application-programming
interface (API) for OpenGL. GLUT makes it considerably easier to learn about and
explore OpenGL programming. GLUT provides a portable API so we can write a single
OpenGL program that works on many platforms, including Win32 PCs and X1l

workstations.

4.3 Glut Framework Application

As described in the system design part [ZXL], there are three classes, CGLApp,

CGlutFramework and CGLWindow, for building the glut framework application.

4.3.1 System Start Implementation

Class CGLApp has functions: Init() for initializing some objects, such as,

CGlutFramework, CGLView and CGLCtrl, RunCreateMainWindow() and

-19-

RunCreateNewWindow() to create windows and run the windows, and CloseWindow()
for closing the individual window. The main() function is as a friend function of class

CGLApp.

4.3.2 OpenGL GLUT Framework and C++ Language

The class CGlutFramework groups all the GLUT callback functions and uses
GlutCreateWindow() function to pass a CGLWindow pointer to itself.

class CGlutFramework ({

public:
CGlutFramework{int argc, char** argv);
virtual ~CGlutFramework() ;

void GlutCreateWindow(const char* szname,
CGLWindow* pWindow,
int wnd, GLWND& w);
void MainLoop(void);

private:

static void DisplayFunc(void);

static void IdleFunc(void) ;

static void KeyboardFunc (unsigned char key,
int x, int y);

static void MotionFunc(int x, int y);

static void MouseFunc(int button, int state,
int x, int y);

static void ReshapeFunc(int w, int h);

static void SpecialFunc(int key, int x, int y);

}s;

All the member functions, which are related to callback, are static members and the

implementation of the function GlutCreateWindow() is as follows;

void GlutCreateWindow(const char* szname,
CGLWindow* pWindow,
int wnd, GLWND& w)

-20-

int id = 0;
if (wnd == 0)

id = glutCreateWindow(szname) ;
if (wnd '= 0)

id = glutCreateSubWindow(wnd, w.x, w.y, w.w, w.h);
pGLWnd[id] = pWindow;
nWindows = id;
glutDisplayFunc (DisplayFunc) ;
glutKeyboardFunc (KeyboardFunc) ;
glutMouseFunc (MouseFunc) ;
glutMotionFunc (MotionFunc) ;
glutSpecialFunc (SpecialFunc) ;
glutReshapeFunc (ReshapeFunc) ;

}

Inside the function, we can see it contains all the callback function calls, and it is just like

GLUT application in C-language style.

4.3.3 OpenGL Windows in the System

For class CGLWindow, all the member functions are almost like those in
CGlutFramework, but they are not static members. Therefore we can create multiple

windows without any limitation.

4.4 View-Document-Control Implementations

In the system, the classes CGLView, CGLDoc and CGLCtrl play the rule of core, handle

all the window events and display graphics objects on the windows.

4.4.1 View Class Implementation

The CGLView class contains the functionalities to display the graphics objects, change

background color and make the global model view transformations.

-21-

The class CGLCtrl passes messages to CGLView class for moving the light position,

look around, zoom, and etc. The display is implemented as,

void CGLView: :Display(int wid)
{
if (wid == 1)({
glClearColor (m_bkColor.x, m_bkColor.y,
m_bkColor.z, 1.0);

} else {
glClearColor(0.0, 0.0, 0.0, 1.0);

}
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

SetLight () ;
ProjectionTransform() ;
ViewTransform();
GetGLDoc () .Display();
glutSwapBuffers();

The SetLight(), ProjectTransform() and ViewTransform() are belong to CGLView
member functions. For displaying 3D graphics objects, there is a dependence to call

CGLDoc function, Display().

4.4.2 Document Class Implementation

The class CGLDoc is implemented for passing the display command from class
CGLView, managing 3D graphic objects, such as, add objects, delete object and select
object for the manipulations in class CGLOBject and managing the import and export of

assembly data file. Class CGLCtrl issues all the message commands.

e Pass Display() function from class CGLView.

void CGLDoc: :Display()

-22-

{
for (int i = 0; 1 < m_nObjects; i++)
{
m_pObjects[i]->Draw() ;
}
}

From the implementation of this function, class CGLDoc collects all the objects and the

Display() function calls all the objects to draw.

e To manage 3D graphic objects, we have functions, AddObjects(), DeleteObject(),

SelectObject() and ClearObjects(),

void CGLDoc: :DeleteObject (int index)

{
delete m_pObjects(index];
m_nObjects--;
for (int i = index; i < m_nObjects; 1++)

{
m_pObjects[i] = m_pObjects[i+l];

}
m_pObjects[m_nObjects] = 0;

For the delete object process, class CGLCtrl sets the command to select the index of the

object list to be deleted. In the delete object function.

void CGLDoc: :SelectObject (int index)
{

m_nIndex = index;

}

Class CGLCtrl calls the function to select object by choosing the index of the object list.

void CGLDoc: :ClearObjects ()

223 -

{
for (int i = 0; 1 < m_nObjects; i++)

{
if (m_pObjects[il])
{
delete m_pObjects[i];
m_pObjects([i] = 0;
}
}
m_nObjects = 0;
}
The function ClearObjects() clears all the objects from the object list and sets the number

of object be 0.

o Import and export data files are also main part in class CGLDoc, we have the
functions, ReadFileNames() and ExportAsmFile(), to make the O process, both
functions pass the reading and writing functionalities to class CGLObject and
CGLAssembly, and the functions, FileState(int state), ImportFile(int type),

GetNumFiles() and GetFilename(), to manage the assembly file data.

4.4.3 Control Class Implementation

The class CGLCtrl takes over all the actions on running the system and has the
functionalities to do window menu control, mouse action control, keyboard key action

and special key action control. The member functions are listed for those functionalities.

) void MakeMenu();

) void Mouse(int button, int state, int x, int y);
L void Keyboard(unsigned char key, int x, int y);
L void SpecialKey(int key, int x, int y);

-24-

void Motion(int x, int y);

4.4.3.1 Window Menu Control

In this system implementation, we have various window menu callback functions for the

corresponding tasks.

void MainMenu(int value) for the start of the window menu and command to
terminate the application;

void WindowMenu(int value) for creating windows and subwindows, and closing the
windows and passing the commands to class CGLApp;

void FileMenu(int value) for reading the list of assembly file names, importing and
exporting assembly data files and passing the commands to class CGLDoc;

void OperationTypeMenu(int value) for defining model view commands and passing
the commands to class CGLView;

void AddObjectMenu(int value) for loading an object from the primitive object list
and passing the commands to class CGLDoc;

void DeleteObjectMenu(int value) for deleting an object from the object list loaded
and passing the commands to class CGLDoc;

void SelectObjectMenu(int value) for selecting an object from the object list loaded to
manipulate the individual object later, and passing the commands to class CGLDoc;
void BkColorMenu(int value) for changing the background color and passing the
commands to class CGLView;

void ObjectColorMenu(int value) for changing the object color, the object is

determined by select object menu, and passing the commands to class CGLView;

-25-

e void ObjectStateMenu(int value) for switching the object states, solid or wire, and
passing the commands to class CGLDoc;

e void ProjectionMenu(int value) for switching the projections, orthographic or
perspective projections, and passing the commands to class CGLView;

e void ShadeModelMenu(int value) for switching the shade models, GL_FLAT or
GL_SMOOTH, and passing the commands to class CGLView;

e void LightMenu(int value) for determining the items of light to manipulate enabling
light, disabling light, or moving light, and passing the commands to class CGLView;

e void ImportFileMenu(int value) for determining the action to import data file and

passing the command to class CGLDoc.

4.4.3.2 Mouse Control

Correspondingly, there are two functions, MouseFunc() and MotionFunc(), which are
directly processed from GLUT callback functions. In this system, we also use the two
functions for the mouse control. Both functions are called from class CGLWindow. Their
functionalities are for manipulations of global view environment, such as, moving light,

look around and zoom.

4.4.3.3 Keyboard Key Control
For the keyboard key control, it is also called from class CGLWindow. The keyboard

keys are defined for controlling the specific view directions.

-26-

Key View direction | View Position
U Top view [0, 5, 0]
A\ Bottom view [0, -5, 0]
L Left view [-5,0,0]
R Right view (5,0,0]
F Front view [0, 0, 5]
B Back view [0, 0, -5]

The commands are passed to class CGLView.

4.4.3.4 Special Key Control
For the special key control, it is also called from class CGLWindow. Special keys control
the actions, such as, translations, rotations and scales, of the individual objects selected

from the object list.

Special Key GLUT Enumeration Functionality Behavior
Fl GLUT_KEY_FI Scale Small in x
F2 GLUT_KEY_F2 Scale Large in x
F3 GLUT_KEY_F3 Scale Smalliny
F4 GLUT_KEY_F4 Scale Largeiny
FS GLUT _KEY_FS Scale Small in z
F6 GLUT _KEY_F6 Scale Large in z
F7 GLUT KEY_F7 Rotate CW in x

-27-

F8 GLUT_KEY_F8 Rotate CCWinx
F9 GLUT KEY_F9 Rotate CWiny
F10 GLUT KEY_FI10 Rotate CCWiny
F11 GLUT_KEY_Fl11 Rotate CWinz
F12 GLUT _KEY_FI12 Rotate CCWinz
LEFT GLUT KEY_LEFT Translate Move left
RIGHT GLUT_KEY_RIGHT Translate Move right
UpP GLUT _KEY_UP Translate Move up
DOWN GLUT_KEY_DOWN Translate Move down
HOME GLUT_KEY_HOME Translate Move front
END GLUT_KEY_END Translate Move back
PAGE UP GLUT KEY_PAGE_UP Scale Small in all
PAGE DOWN | GLUT KEY_PAGE_DOWN Scale Large in All
INSERT GLUT_KEY_INSERT Scale Recover Scale

Here CW and CCW represent Clockwise and Counter Clockwise respectively.

4.5 Lighting

Without light, it is impossible to visualize 3D stereographic object on the screen. There
are many parameters need to be defined, such as, light position and light properties.
Lighting is an advanced part in OpenGL. It is very difficulty and complicated to represent
real world 3D graphics by adjusting the lighting related parameters. In this system, we

build a light class to encapsulate the light properties in one class. It presents the

-28-

possibility for the user to create multiple lights and specify the individual light sources

conveniently.

class CGLLight {

public:
CGLLight (GLenum light);
virtual ~CGLLight();

void SetState(bool b);

bool GetState() { return m_LightState; }
void SetLight();

void Draw() ;

void Enable();

void Disable();

void SetPosition(float x, float y, float z);
void SetMoveAngle(int dx, int dy);

void SetSpotDirection(float vec([3]);

private:
int m_nLight;
bool m_LightState;
GLenum m_light;
float m_const;
float m_linear;
float m_qguad;
float m_ambient({4];
float m_diffusel4d};
float m_specular(4];
float m_spotangle;
float m_spotexp;
float m_xSpin;
float m_ySpin;
float m_pos[4];
float m_vect[3]:;

}i

From the constructor of class CGLLight, when we create a CGLLight object, we should
initialize Glenum parameter, such as, GL_LIGHTO, GL_LIGHTI, .., GL_LIGHT7. The
light position and light properties can set by the public functions. In class CGLView, the

function SetLight() enables GL_LIGHTING, enables and disables the specific light by

-29 .

calling CGLLight Enable() or Disable() functions, and draws the light source object, solid

sphere in red color.

4.6 Graphics Objects

3D geometric objects are the basic components for graphic representation. As a graphic
object editor, several primitive graphic objects are created in coding, such as, cube, cone,
sphere, cylinder, torus, and etc. We build these primitive objects inherited from the base

CGLObject.

4.6.1 Class CGLObject

In the system, the base class CGLObject defines the basic attributes and functions for
decribing the 3D geometric structure and properties, such as, size, color, origin and
material properties.

class CGLObject

{

public:
CGLObject (int type);
virtual ~CGLObject();

virtual void Draw() = 0;

int GetObjectTypel();

void SetColor(int type):;

void SetState(int state) { m_state = state; }
void SetTransform(int state);

virtual void ReadDataEntity(ifstream& rfile);
virtual void WriteDataEntity(ofstream& ofile);

protected:
void MakeTransform();
void MaterialProperty():
int m_state;
int m_findex;

-30-

int m_objType;

GLPOINT m_origin;

BBOX m_bbox;

GLPOINT m_color;

GLPOINT m_scale;

GLPOINT m_rotate;

float m_mat(4];

float m_amb(4];

float m_dif(4];

float m_spel(4];

float m_emi[4];

float m_shin;
}:
From the member function of this class, we know that the class has the functionalities to
define object color, show state, solid or wire, transformations, and processing data file

import and export.

4.6.2 Children Classes
CGLCube, CGLCone, CGLSphere, CGLCylinder, CGLTorus, CGLTeapot etc. inherit
from the base class CGLObject. They have common member functions:

e Constructor()

e Destructor()

e Draw()

4.6.3 Class Assembly

The class CGLAssembly not only shares the common attributes and functions, but also
has its individual functionalities.

class CGLAssembly: public CGLObject
{

-31 -

public:

CGLAssembly (int type);
~CGLAssembly () ;

bool ReadDataFile(int findex);

void WriteDataFile(ofstream& ofile);

virtual void ReadDataEntity(ifstream& rfile);

virtual void WriteDataEntity(ofstream& ofile);
virtual void Draw();

private:
int m_nObjects;
CGLObject* m_pObjects[60];
int m_findex;

}:

CGLObject* CreateObject(int type);

It has the functions, bool ReadDataFile(int findex), void WriteDataFile(ofstream& ofile),

virtual void ReadDataEntity(ifstream& rfile), virtual void WriteDataEntity(ofstream&

ofile), to import and export assembly data files. The implementation of Draw() function

is different from the other children classes.

void CGLAssembly: :Draw()

{

}

glPushMatrix () ;

MaterialProperty();

MakeTransform() ;

for (int i = 0; i < m_nObjects; i++)

{

if (m_pObjects([i]) m_pObjects[i]->Draw();
}
glPopMatrix();

As the class CGLAssembly holds a list of subobjects, it contains the multiple objects and

does not have the function to change color.

-32-

4.7 Import and Export Data Files

For importing and exporting assembly data files, we have three kinds of functions, such
as, reading and writing the list of file names from the file, filename.con, reading and

writing object contents from and to files, n_assembly.dat.

4.7.1 Read and Write File Names
To read file names from the file filenames.con, we have the functions, ReadFileNames()
and WnteFileNames().

e Read File Names

bool CGLDoc: :ReadFileNames ()
{
bool bRet = false;
ifstream rfile("data\\filename.con");

if (rfile.is_open())

{
rfile >> m_nFiles;
for (int i = 0; i < m_nFiles; 1i++)
{
rfile >> m_pFilenames[i];
}
bRet = true;
rfile.close(});
}

return bRet;

e Write File Names function is in the function ExportDataFile().

4.7.2 Read Data Files
To read assembly data file, we have the functions, ImportFile() in CGLDoc and

ReadDataFile() in CGLAssembly.

-33-

bool CGLDoc: :ImportFile(int type)
{
bool bRet = false;
CGLAssembly* pAsm = new CGLAssembly (MN_OBJECT_ASSEMBLY) ;
if (pAsm->ReadDataFile(type))
{
m_pObjects[m_nObjects++] = (CGLObject*) pAsm;
} else {
delete pAsm;
}
return bRet;

4.7.3 Write Data Files

To write assembly data file, we have the functions, ExportAsmFiles().

bool CGLDoc: :ExXportAsmFile()

{
bool bRet = false;
if (m_nObjects > 1)

{
ReadFileNames () ;
if (m_nFiles > 0)
{
m_pFilenames[m_nFiles] = m_pFilenames{m_nFiles-1]+1;
} else {
m_pFilenames [m_nFiles] = 1;
}

m_nFiles++;
ofstream wfile("data\\filename.con");
If (wfile.is_open())

{
wfile << m_nFiles << endl;
for (int i = 0; i < m_nFiles; 1i++)
{
wfile << m_pFilenames[i] << endl;
}
wfile.close();
}

char buf([5], str[25];
memset (str, 0, 25);

-34-

_itoa(m_pFilenames[m_nFiles-1], buf, 5);
strcpy(str, "data\\"):;

strcat(str, buf);

strcat(str, "_Assembly.dat");

ofstream ofile(str):;

if (ofile.is_open())

{
ofile << m_nObjects << endl;
for (int i = 0; 1 < m_nObjects; i++)
{
m_pObjects[i]->WriteDataEntity(ofile);
}
ofile.close();
}

}
return bRet;

4.8 Structure Abstract Type Definitions

In this system, we define three struct abstract types, such as GLPOINT, BBOX and

GLWND.

e GLPOINT is for defining 3D point, vector and some positions.

typedef struct _tagGLPOINT
{

float x;

float y:

float z;
} GLPOINT;

e BBOX is for defining the bounds of the objects.

typedef struct _tagBBOX
{

GLPOINT min;

GLPOINT max;
} BBOX;

e GLWND id for defining window size and position.

typedef struct _tagGLWND
{

-35-

int w;
int h;
int x;
int y:
} GLWND;

4.9 Window Item Parameter Enumerations

Menu Item Variables

Menu Item Variables

MN_FILE_IMPORT_FILE

1

MN_OBJCOLOR_WHITE

31

MN_FILE_EXPORT_FILE 12 | MN_OBICOLOR _BLACK 32
MN_FILE_IMPORT_NAMES 13 | MN_OBJCOLOR_RED 33
MN_PROJECTION_ORTH 15 | MN_OBJCOLOR_GREEN 34
MN_PROJECTION PERS 16 | MN_OBJCOLOR BLUE 35
MN_OPERATION_LIGHT 17 | MN_OBJCOLOR_YELLOW | 36
MN_OPERATION_VPOINT 18 | MN_OBJCOLOR_PINK 37
MN_BKCOLOR_WHITE 20 | MN_OBJCOLOR_SKY 38
MN_BKCOLOR BLACK 21 | MN_OBJECT _ASSEMBLY | 40
MN_BKCOLOR_RED 22 | MN_OBJECT_CUBE 41
MN_BKCOLOR_GREEN 23 | MN_OBJECT_CONE 42
MN_BKCOLOR_BLUE 24 | MN_OBJECT_SPHERE 43
MN_BKCOLOR_YELLOW 25 | MN_OBJECT_TORUS 44
MN_BKCOLOR_PINK 26 | MN_OBJECT_CYLINDER 45
MN_BKCOLOR_SKY 27 | MN_OBJECT TEAPOT 46
MN_SHADEMODEL_FLAT 28 | MN_OBJECT_DHEDRON 47

-36-

MN_SHADEMODEL_SMOOTH

MN_OBJECT_IHEDRON

48

MN_LIGHT ENABLE

61

MN_OBJECT_OHEDRON

49

MN_LIGHT DISABLE

62

MN_OBJECT _THEDRON

50

MN_LIGHT MOVE

63

MN_VIEW LOOK

500

MN_WINDOW_CLOSE

64

MN_VIEW_ZOOM

501

MN_WINDOW_CREATE

65

MN_MOVE_UP

MN_SUBWINDOW_CREATE

66

MN_MOVE_NO

MN_WINDOW_NOCREATE

67

MN_MOVE_DOWN

MN_OBJECT SOLID

68

MN_OBJECT_CLEAR

888

MN_OBJECT WIRE

69

MN_TERMINATE

999

-37-

Chapter 5: 3D Graphics Editor — Application Result

In this section, a sample application is provided with the 3D graphics editor. The editor
builds the graphic objects by assembling the primitive objects, such as, cube, cone,
sphere, torus, cylinder, teapot, and etc. The processes for building the 3D graphic objects
demonstrate all the functionalities of the system, such as, multi-objects assembly editing,
multi-window creation and manipulation and dynamic assembly objects storage and
loading. The system is a GLUT framework application, has the primitive objects let the
user to document and edit new complex objects, and provides the functions to manipulate

the objects globally and individually.

The 3D graphic object is named to * family kitchen Table and Chairs™. It is designed by
several stages, system start, creating a table, chair, cup, light, their assembly, multiple

windows, etc.
5.1 Start System

Before creating a 3D graphic object, we start the system by executing the exe file,

openglapp.exe. An OpenGL Framework window is created.

-38 -

Figure 5.1 Open OpenGL Window
From the figure, the window is an empty window. When pressing mouse right button, we

a window menu, which contains the items, window, file, model, view, object, exit.

Figure 5.2 OpenGL Window Menu

In order to see the 3D graphic environment, we need to enable the light.

-39.

5.2 Creating A Table

From subsection 5.1, we already start the system and open the window menu, then we
cans do the following processes.
o Select model item and add object item under the model item, and create a cube.
a. After creating a cube, select model item and select object item under the
model item, and choose the cube item.

b. Press the special keys to reshape the cube by the transformations.
e Press F1 to narrow the cube in the direction x-axis (1, 0, 0);
e Press F2 to enlarge the cube in the direction x-axis (1, 0, 0);
e Press F3 to narrow the cube in the direction y-axis (0, 1, 0);
e Press F4 to enlarge the cube in the direction y-axis (0, 1, 0);
e Press F5 to narrow the cube in the direction z-axis (0, 0, 1);
e Press F6 to enlarge the cube in the direction z-axis (0, 0, 1);
e Press F7 to rotate the cube in clockwise around x-axis;
e Press F8 to rotate the cube in counter-clockwise around x-axis;
e Press F9 to rotate the cube in clockwise around y-axis;
e Press F10 to rotate the cube in counter-clockwise around y-axis;
e Press F11 to rotate the cube in clock-wise around z-axis;
e Press F12 to rotate the cube in counter-clockwise around z-axis;
e Press PageUP to scale the cube in small;
e Press PageDown to enlarge the cube in large;

e Press Insert key to recover the cube to the original shape.

-40-

c. Press the keyboard keys, ‘v’, v, ‘I’, ‘r’, ‘f°, ‘b’ to view the object from

specific directions:

e Press key ‘u’, view the object from direction (0, 1, 0);

e Press key ‘v’, view the object from direction (0, -1, 0);

e Press key ‘I’, view the object from direction (-1, 0, 0);

e Press key ‘r’, view the object from direction (1, 0, 0);

e Press key ‘f°, view the object from direction (0, 0, 1);

e Presskey ‘b’, view the object from direction (0, 0, -1);

e Select model item and add object item under the model item, and create another four

cubes, then reshaping the cylinders to the table legs.

Figure 5.3 Create a Table

After the table is created, select file item and export file item under file item to save the

table to a data file as the assembly data.

-4 -

5.3 Creating A Chair

As the process for creating a table, we can load a sequence of cubes to create a chair.

Figure 5.4 Create a Chair

The chair is created and, the graphic object is exported and stored in an assembly data

file.

5.4 Creating A Light

For creating a light, we can use the primitive objects, such as, sphere, cone, torus and

cylinder, and export the assembly graphic object and store in an assembly data file.

-42-

Figure 5.5 Create a Light

For creating the light, we use the system functions, all the transformations, moving

system light, manipulating global view positions, look around and zoom. All the global

environmental controls are with left mouse button and its motion.

5.5 Assembly the Created Objects

For building the final assembly graphic object, we load all the created assembly objects.

Select window menu file item and file names item under the file item;
Select window menu file item and import files item under the file item;
Load the table assembly file;

Load the chair assembly file in four times;

Load the light assembly file;

Zoom the view.

-43 -

Figure 5.6 Assembly Table, Chair and Light

For loading the assembly files, we reshape the objects by the transformations with special

keys. We cannot change the assembly color as we take the assembly data as the final

design result.

5.6 Create A Cup

For creating a cup, we need load a sphere, a cylinder and a torus,
¢ Load a sphere, change the color to green and the shape to a dish.
o Add a cylinder, scale the cylinder to a cup body.

e Add a torus, scale the torus to a cup handle.

Figure 5.7 Create A Cup Object

5.7 Assemble the Cup and Table-Chair-Light objects

For building the final object, we assemble the cup object and table-chair-light object, and
some extra-objects.

e Load the assembly table-chair-light object and zoom it in the comfortable size;

e Load four assembly cup objects, reshape them and put on the table;

e Add a sphere, scale the sphere to a dish and move the dish on the table;

e Add teapot and change the color to pink, move the teapot on the dish.

-45 -

Figure 5.8 Final Assembly Graphic Object

We can change the background color to black.

Figure 5.9 The Graphic Object in Black Background

5.8 Create Multiple Windows

For creating and terminating multi-windows, the functions, glutCreateWindow(),

glutCreateSubWindow(), glutDestroyWindow(), glutGetWindow() are called to process

-46 -

the tasks. In this system, we use window menu to control the window creating and

closing actions.

e Create a window dynamically, select menu Window item and Create Subwindow

item at any time.

Figure 5.10 Select Menu Create Subwindow

e Move mouse cursor to define location for creating a subwindow. Press mouse left

button, then window is created.

-47 -

Figure 5.11 Create Sub window

Repeat the sub window creation process, you can create the subwindows you want.

Figure 5.12 Multi — Subwindows

For closing subwindow, press right mouse button on the subwindow and select Close

Window item, then the window is closed.

-48 -

Uipendyl b unewerd

Figure 5.14 The Window Is Closed
The subwindows can be created and closed at any time and any location of the parent

window.

-49 -

For creating new windows, the principle is same as to create subwindow, but the new

window is not contained in the other window and is independent from other window.

Figure 5.16 Multi-Windows Layout

-50-

5.9 Global Environment and Individual Object features

In this demo example, some global environment and individual object features are
presented. For the global features, the system enables background color, move light, look
around, zoom, switch shade model between flat and smooth, and switch projections
between orthographic and perspective projections; for individual object features, change
object color and switch object show states between solid and wire.

e Load objects to window.

Figure 5.17 Objects In Multi-Color

e Change light position, projection to orthographic and some objects to wire state.

=51 -

Figure 5.18 Global and Objects Features

-52-

Chapter 6: Conclusion

From the application to edit and document 3D graphic objects, we realize to use GLUT
framework to develop a system with object-oriented technology, create multiple windows
and subwindows, and import or export graphic object data. The application effectively

represents our goal to use GLUT framework.

6.1 Experiences on Object-Oriented Programming

From the system analysis, design and implementation, we use object-oriented technology
to develop the project. We understand well about internal knowledge of inheritances,
dependency, associations, encapsulations and polymorphisms. It provides us an easy way

to model the project well in object-oriented concept.

C++, as an object-oriented language, is concerned with the creation, management, and
manipulation of objects. An object encapsulates data and methods used to manipulate the

data.

For OpenGL framework, we learn how to build a bridge to pass callback functions to
create multiple windows and subwindows, and other OpenGL API functionalities. We
find the data structure to store assembly data, and build a hierarchical tree to call

assembly and primitive objects recursively.

-53-

6.2 Further Work

When documenting the graphic objects by using 3D graphics editor, we find the graphic
user interface is convenient to user to operate its items.

For the future work, we need,

e Get more functionalities to build the GUI part;

e Have multiple views and multiple controls;

e Add surface rendering from GLU library;

e Add more light functionalities.

-54-

Bibliography

[PGO0O0]

[PG98]

[RW96]

[BRJ99]

[MJT99]

[HS98]

[ZXL]

Peter Grogono, Requirement of Glut Framework Application,
Faculty Website, Concordia University, 2000.

Peter Grogono. Getting Started with OpenGL, Concordia
University, 1998.

Richard S. Wright JR. OpenGL Super Bible, 1996

Grady Booch, James Rumbauéh, Ivar Jacobson, The Unified
Modeling Language User Guide, Press. Addison-Wesley,
1999

Mason Woo, Jackie Neider, and Tom Davis. OpenGL
Programming Guide, Third Edition. Addison-Wesley, 1999
Herbert Schildt. C++: The Complete Reference, Third
Edition, 1998.

Zhaoxia Liu, Design of 3D Graphics Editor, Major report,

department of CS, Concordia, May, 2002.

-55-

