13 research outputs found

    Hyperactivity in the Gunn rat model of neonatal jaundice: age-related attenuation and emergence of gait deficits

    Get PDF
    Background Neonatal jaundice resulting from elevated unconjugated bilirubin (UCB) occurs in 60–80% of newborn infants. Although mild jaundice is generally considered harmless, little is known about its long-term consequences. Recent studies have linked mild bilirubin-induced neurological dysfunction (BIND) with a range of neurological syndromes, including attention deficit-hyperactivity disorder. The goal of this study was to measure BIND across the lifespan in the Gunn rat model of BIND. Methods Using a sensitive force plate actometer, we measured locomotor activity and gait in jaundiced (jj) Gunn rats versus their non-jaundiced (Nj) littermates. Data were analyzed for young adult (3–4 months), early middle-aged (9–10 months), and late middle-aged (17–20 months) male rats. Results jj rats exhibited lower body weights at all ages and a hyperactivity that resolved at 17–20 months of age. Increased propulsive force and gait velocity accompanied hyperactivity during locomotor bouts at 9–10 months in jj rats. Stride length did not differ between the two groups at this age. Hyperactivity normalized and gait deficits, including decreased stride length, propulsive force, and gait velocity, emerged in the 17–20-month-old jj rats. Conclusions These results demonstrate that, in aging, hyperactivity decreases with the onset of gait deficits in the Gunn rat model of BIND

    Visual recognition memory, manifested as long-term habituation, requires synaptic plasticity in V1

    No full text
    Familiarity with stimuli that bring neither reward nor punishment, manifested through behavioural habituation, enables organisms to detect novelty and devote cognition to important elements of the environment. Here we describe in mice a form of long-term behavioural habituation to visual grating stimuli that is selective for stimulus orientation. Orientation-selective habituation (OSH) can be observed both in exploratory behaviour in an open arena, and in a stereotyped motor response to visual stimuli in head-restrained mice. We show that the latter behavioural response, termed a vidget, requires V1. Parallel electrophysiological recordings in V1 reveal that plasticity, in the form of stimulus-selective response potentiation (SRP), occurs in layer 4 of V1 as OSH develops. Local manipulations of V1 that prevent and reverse electrophysiological modifications likewise prevent and reverse memory demonstrated behaviourally. These findings suggest that a form of long-term visual recognition memory is stored via synaptic plasticity in primary sensory cortex

    From Hitler to Hippies: The Volkswagen Bus in America

    No full text
    corecore