37 research outputs found

    Lynx1 and Aβ1–42 bind competitively to multiple nicotinic acetylcholine receptor subtypes

    Get PDF
    AbstractLynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification to demonstrate that a water-soluble variant of human Lynx1 (Ws-Lynx1) isolates α3, α4, α5, α6, α7, β2, and β4 nAChR subunits from human and rat cortical extracts, and rat midbrain and olfactory bulb extracts, suggesting that Lynx1 forms complexes with multiple nAChR subtypes in the human and rodent brain. Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal–regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 nAChRs, suggesting that Lynx1 can affect the function of native non-α7, non-α4β2 nAChR subtypes. We further show that Lynx1 and oligomeric β-amyloid1–42 compete for binding to several nAChR subunits, that Ws-Lynx1 prevents β-amyloid1–42–induced cytotoxicity in cortical neurons, and that cortical Lynx1 levels are decreased in a transgenic mouse model with concomitant β-amyloid and tau pathology. Our data suggest that Lynx1 binds to multiple nAChR subtypes in the brain and that this interaction might have functional and pathophysiological implications in relation to Alzheimer's disease

    Water-soluble variant of human Lynx1 induces cell cycle arrest and apoptosis in lung cancer cells via modulation of α7 nicotinic acetylcholine receptors.

    No full text
    Lynx1 is the first three-finger prototoxin found in the mammalian central nervous system. It is a GPI-anchored protein modulating nicotinic acetylcholine receptors (nAChRs) in the brain. Besides the brain, the Lynx1 protein was found in the lung and kidney. Endogenous Lynx1 controls the nicotine-induced up-regulation of the expression of α7 type nAChRs in lung adenocarcinoma A549 cells as well as the cell growth. Here, we analyzed the Lynx1 expression in the set of human epithelial cells. The Lynx1 expression both at the mRNA and protein level was detected in normal oral keratinocytes, and lung, colon, epidermal, and breast cancer cells, but not in embryonic kidney cells. Co-localization of Lynx1 with α7-nAChRs was revealed in a cell membrane for lung adenocarcinoma A549 and colon carcinoma HT-29 cells, but not for breast adenocarcinoma MCF-7 and epidermoid carcinoma A431 cells. The recombinant water-soluble variant of Lynx1 without a GPI-anchor (ws-Lynx1) inhibited the growth of A549 cells causing cell cycle arrest via modulation of α7-nAChRs and activation of different intracellular signaling cascades, including PKC/IP3, MAP/ERK, p38, and JNK pathways. A549 cells treatment with ws-Lynx1 resulted in phosphorylation of the proapoptotic tumor suppressor protein p53 and different kinases participated in the regulation of gene transcription, cell growth, adhesion, and differentiation. Externalization of phosphatidylserine, an early apoptosis marker, observed by flow cytometry, confirmed the induction of apoptosis in A549 cells upon the ws-Lynx1 treatment. Our data revealed the ability of ws-Lynx1 to regulate homeostasis of epithelial cancer cells

    Recombinant Production and Structure-Function Study of the Ts1 Toxin from the Brazilian Scorpion Tityus serrulatus

    No full text
    An effective bacterial system for the production of β-toxin Ts1, the main component of the Brazilian scorpion Tityus serrulatus venom, was developed. Recombinant toxin and its 15N-labeled analogue were obtained via direct expression of synthetic gene in Escherichia coli with subsequent folding from the inclusion bodies. According to NMR spectroscopy data, the recombinant toxin is structured in an aqueous solution and contains a significant fraction of β-structure. The formation of a stable disulfide-bond isomer of Ts1, having a disordered structure, has also been observed during folding. Recombinant Ts1 blocks Na+ current through NaV1.5 channels without affecting the processes of activation and inactivation. At the same time, the effect upon NaV1.4 channels is associated with a shift of the activation curve towards more negative membrane potentials.status: publishe

    Interaction of three-finger proteins from snake venoms and from mammalian brain with the cys-loop receptors and their models

    No full text
    International audienceWith the use of surface plasmon resonance (SPR) it was shown that ws-Lynx1, a water-soluble analog of the three-finger membrane-bound protein Lynx1, that modulates the activity of brain nicotinic acetylcholine receptors (nAChRs), interacts with the acetylcholine-binding protein (AChBP) with high affinity, K D = 62 nM. This result agrees with the earlier demonstrated competition of ws-Lynx1 with radioiodinated α-bungarotoxin for binding to AChBP. For the first time it was shown that ws-Lynx1 binds to GLIC, prokaryotic Cys-loop receptor (K D = 1.3 μM). On the contrary, SPR revealed that α-cobratoxin, a three-finger protein from cobra venom, does not bind to GLIC. Obtained results indicate that SPR is a promising method for analysis of topography of ws-Lynx1 binding sites using its mutants and those of AChBP and GLIC

    Extracellular Vesicles Derived from Acidified Metastatic Melanoma Cells Stimulate Growth, Migration, and Stemness of Normal Keratinocytes

    No full text
    Metastatic melanoma is a highly malignant tumor. Melanoma cells release extracellular vesicles (EVs), which contribute to the growth, metastasis, and malignancy of neighboring cells by transfer of tumor-promoting miRNAs, mRNA, and proteins. Melanoma microenvironment acidification promotes tumor progression and determines EVs’ properties. We studied the influence of EVs derived from metastatic melanoma cells cultivated at acidic (6.5) and normal (7.4) pH on the morphology and homeostasis of normal keratinocytes. Acidification of metastatic melanoma environment made EVs more prooncogenic with increased expression of prooncogenic mi221 RNA, stemless factor CD133, and pro-migration factor SNAI1, as well as with downregulated antitumor mir7 RNA. Incubation with EVs stimulated growth and migration both of metastatic melanoma cells and keratinocytes and changed the morphology of keratinocytes to stem-like phenotype, which was confirmed by increased expression of the stemness factors KLF and CD133. Activation of the AKT/mTOR and ERK signaling pathways and increased expression of epidermal growth factor receptor EGFR and SNAI1 were detected in keratinocytes upon incubation with EVs. Moreover, EVs reduced the production of different cytokines (IL6, IL10, and IL12) and adhesion factors (sICAM-1, sICAM-3, sPecam-1, and sCD40L) usually secreted by keratinocytes to control melanoma progression. Bioinformatic analysis revealed the correlation between decreased expression of these secreted factors and worse survival prognosis for patients with metastatic melanoma. Altogether, our data mean that metastatic melanoma EVs are important players in the transformation of normal keratinocytes
    corecore