21 research outputs found

    Genetic regulation of gene expression in the epileptic human hippocampus

    Get PDF
    Epilepsy is a serious and common neurological disorder. Expression quantitative loci (eQTL) analysis is a vital aid for the identification and interpretation of disease-risk loci. Many eQTLs operate in a tissue- and condition-specific manner. We have performed the first genome-wide cis-eQTL analysis of human hippocampal tissue to include not only normal (n = 22) but also epileptic (n = 22) samples. We demonstrate that disease-associated variants from an epilepsy GWAS meta-analysis and a febrile seizures (FS) GWAS are significantly more enriched with epilepsy-eQTLs than with normal hippocampal eQTLs from two larger independent published studies. In contrast, GWAS meta-analyses of two other brain diseases associated with hippocampal pathology (Alzheimer’s disease and schizophrenia) are more enriched with normal hippocampal eQTLs than with epilepsy-eQTLs. These observations suggest that an eQTL analysis that includes disease-affected brain tissue is advantageous for detecting additional risk SNPs for the afflicting and closely related disorders, but not for distinct diseases affecting the same brain regions. We also show that epilepsy eQTLs are enriched within epilepsy-causing genes: an epilepsy cis-gene is significantly more likely to be a causal gene for a Mendelian epilepsy syndrome than to be a causal gene for another Mendelian disorder. Epilepsy cis-genes, compared to normal hippocampal cis-genes, are more enriched within epilepsy-causing genes. Hence, we utilize the epilepsy eQTL data for the functional interpretation of epilepsy disease-risk variants and, thereby, highlight novel potential causal genes for sporadic epilepsy. In conclusion, an epilepsy-eQTL analysis is superior to normal hippocampal tissue eQTL analyses for identifying the variants and genes underlying epilepsy

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    Comparing Drug Treatments in Epilepsy

    No full text
    The great majority of randomised controlled trials (RCTs) that compare antiepileptic drugs are industry sponsored and have the objective of obtaining a monotherapy license for a drug. Such trials do not inform everyday clinical practice as they tend to be too short and to depart from clinical practice by restricting clinicians in their choice of actions. The data that exists provides evidence that drugs with actions on voltage-gated sodium channels provide best seizure control for localised onset seizures and epilepsy syndromes, while valproate provides best seizure control for generalised epilepsy and unclassified syndromes. Drugs do, however, vary in their tolerability over the short term and in their risk for rare serious idiosyncratic adverse events, chronic toxicity and teratogenicity; issues that cannot be examined within the scope of RCTs

    Acetazolamide: old drug, new evidence?

    No full text
    Acetazolamide is an old drug used as an antiepileptic agent, amongst other indications. The drug is seldom used, primarily due to perceived poor efficacy and adverse events. Acetazolamide acts as a noncompetitive inhibitor of carbonic anhydrase, of which there are several subtypes in humans. Acetazolamide causes an acidification of the intracellular and extracellular environments activating acid-sensing ion channels, and these may account for the anti-seizure effects of acetazolamide. Other potential mechanisms are modulation of neuroinflammation and attenuation of high-frequency oscillations. The overall effect increases the seizure threshold in critical structures such as the hippocampus. The evidence for its clinical efficacy was from 12 observational studies of 941 patients. The 50% responder rate was 49%, 20% of patients were rendered seizure-free, and 30% were noted to have had at least one adverse event. We conclude that the evidence from several observational studies may overestimate efficacy because they lack a comparator; hence, this drug would need further randomized placebo-controlled trials to assess effectiveness and harm.</p

    Whole exome sequencing studies in epilepsy: a deep analysis of the published literature

    No full text
    To evaluate the quality of whole-exome sequencing (WES) reporting in the epilepsy literature. We aimed to assess the quality of reporting of WES in epilepsy. We compared studies based on journal type and if outcome reporting biases exist. We used a self-constructed benchmark to quantitatively analyze studies. We included 451 publications. Reporting was heterogeneous with poor reporting of (1) ACMG guideline application 13% and (2) Human Phenotype Ontology (HPO) numbers in 3% of studies, 3) VUS in 19%. Predictors of reporting included journal type and journal impact factor. Date of publication and publication type were not predictors of poor reporting. Pairwise comparisons of genetics versus neurology journals using relative risks yielded significant differences in reporting of ACMG guideline application (RR 1.88, 95% CI 1.04-3.38); HPO numbers (RR 8.62, 95% CI 1.08-63.37) and deposition of findings to ClinVar (RR 2.50, 95% CI 1.03-6.1). Reporting of WES literature is heterogeneous in quality, and poor reporting hinders collaboration and accession of data into large databases like OMIM and OrphaNet. This study highlights reporting bias in this area and, formal structural guidelines like the CONSORT guidelines used in the reporting of clinical trials are needed to address the issue

    Ictal asystole during long-term video-EEG; semiology, localization, and intervention

    No full text
    Ictal arrhythmias are disturbances of cardiac conduction that occur during clinical or electrographic seizures. Ictal asystole (IA) is rare, and its incidence can range from 0.3–0.4% in patients with epilepsy who were monitored by video-EEG (van der Lende et al., 2015). We report on ten patients (six males and four females) with an age ranging from 31 to 70 years old) who were monitored in our video-EEG (VEEG) unit over the last eight years. These patients were selected based on the history of documented ictal asystole during inpatient VEEG monitoring). In our series the mean latency from the seizure onset to the onset of ictal asystole was 22 seconds and the mean duration of the IA was 15.8 seconds. During the asystolic phase the seizures may clinically continue or syncopal signs may supervene. In our case series all the patients had either left or right temporal lobe epilepsy, six of which were lesional. We found two patterns of ictal semiology in our series. The first group of patients included five patients who experienced a rapid onset of IA in their seizure and the second group where the latency of ictal asystole was relatively late. All our cohort had a permanent pacemaker following the diagnosis, six of these patients have been event free since placement

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    No full text
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice.</p
    corecore