286 research outputs found
The Effect of Dual-Hemisphere Transcranial Direct Current Stimulation Over the Parietal Operculum on Tactile Orientation Discrimination
The parietal operculum (PO) often shows ipsilateral activation during tactile object perception in neuroimaging experiments. However, the relative contribution of the PO to tactile judgment remains unclear. Here, we examined the effect of transcranial direct current stimulation (tDCS) over bilateral PO to test the relative contributions of the ipsilateral PO to tactile object processing. Ten healthy adults participated in this study, which had a double-blind, sham-controlled, cross-over design. Participants discriminated grating orientation during three tDCS and sham conditions. In the dual-hemisphere tDCS conditions, anodal and cathodal electrodes were placed over the left and right PO. In the uni-hemisphere tDCS condition, anodal and cathodal electrodes were applied over the left PO and contralateral orbit, respectively. In the tDCS and sham conditions, we applied 2 mA for 15 min and for 15 s, respectively. Computational models of electric fields (EFs) during tDCS indicated that the strongest electric fields were located in regions in and around the PO. Compared with the sham condition, dual-hemisphere tDCS improved the discrimination threshold of the index finger contralateral to the anodal electrode. Importantly, dual-hemisphere tDCS with the anodal electrode over the left PO yielded a decreased threshold in the right finger compared with the uni-hemisphere tDCS condition. These results suggest that the ipsilateral PO inhibits tactile processing of grating orientation, indicating interhemispheric inhibition (IHI) of the PO
Predicting interindividual response to theta burst stimulation in the lower limb motor cortex using machine learning
Using theta burst stimulation (TBS) to induce neural plasticity has played an important role in improving the treatment of neurological disorders. However, the variability of TBS-induced synaptic plasticity in the primary motor cortex prevents its clinical application. Thus, factors associated with this variability should be explored to enable the creation of a predictive model. Statistical approaches, such as regression analysis, have been used to predict the effects of TBS. Machine learning may potentially uncover previously unexplored predictive factors due to its increased capacity for capturing nonlinear changes. In this study, we used our prior dataset (Katagiri et al., 2020) to determine the factors that predict variability in TBS-induced synaptic plasticity in the lower limb motor cortex for both intermittent (iTBS) and continuous (cTBS) TBS using machine learning. Validation of the created model showed an area under the curve (AUC) of 0.85 and 0.69 and positive predictive values of 77.7 and 70.0% for iTBS and cTBS, respectively; the negative predictive value was 75.5% for both patterns. Additionally, the accuracy was 0.76 and 0.72, precision was 0.82 and 0.67, recall was 0.82 and 0.67, and F1 scores were 0.82 and 0.67 for iTBS and cTBS, respectively. The most important predictor of iTBS was the motor evoked potential amplitude, whereas it was the intracortical facilitation for cTBS. Our results provide additional insights into the prediction of the effects of TBS variability according to baseline neurophysiological factors
Evolution of long-period stacking order (LPSO) in Mg₉₇Zn₁Gd₂ cast alloys viewed by HAADF-STEM multi-scale electron tomography
This is an Accepted Manuscript an article published by Taylor & Francis in Philosophical Magazine on 23 July 2018, available at https://doi.org/10.1080/14786435.2018.1468940.We have studied three-dimensional (3D) structures and growth processes of 14H-type long-period stacking order (LPSO) formed in Mg₉₇Zn₁Gd₂ cast alloys by single tilt-axis electron tomography (ET) using high-angle annular dark-field scanning transmission electron microscopy. Evolution of the solute-enriched stacking faults (SFs) and the 14H LPSO by ageing were visualised in 3D with a high spatial resolution in multi-scale fields of views from a few nanometres to ~10 μm. Lateral growth of the solute-enriched SFs and the LPSO in the (0 0 0 1)ᴍ plane is notable compared to the out-of-plane growth in the [0 0 0 1]ᴍ direction. The 14H LPSO grows at the cost of decomposition of the (Mg, Zn)₃Gd-type precipitates, and accompany a change of in-plane edge angles from 30 to 60°. We have updated the Time–Temperature–Transformation diagram for precipitation in Mg₉₇Zn₁Gd₂ alloys: starting temperatures of both solute-enriched SFs and LPSO formation shifted to a shorter time side than those in the previous diagram
Diel changes in the vertical distribution of larval cutlassfish Trichiurus japonicus
Diel vertical migration of the cutlassfish Trichiurus japonicus larvae were investigated by consecutive 24-h collections at 3-h intervals at a station in the central Seto Inland Sea, Japan in June and September. Only one larva was collected in June 2017, while 224 and 40 larvae were collected in September 2016 and 2017, respectively. Larvae were present only at depths of ≥ 11 m during the day, whereas they were present at depths of 1, 6, 11 and 16 m during the night. Migration was observed in larvae in which swim bladder formation was completed. A similar pattern, namely nocturnal occurrence at shallow depths only of the developed larvae, was observed in another 24-h survey, suggesting that the swim bladder regulates the upward movement of larvae at night.This work was partly supported by the Environment Research and Technology Development Fund (S-13) granted by the Ministry of the Environment, Japan
Three-dimensional shapes and distributions of long-period stacking ordered structures in Mg₉₇Zn₁Gd₂ cast alloys characterized by electron tomography
Three-dimensional (3D) configurations of 14H long-period stacking ordered (LPSO) structures formed in Mg97Zn1Gd2 cast alloys at intermediate stages of the formation process have been studied by single tilt-axis electron tomography using high-angle annular dark-field scanning transmission electron microscopy. Lateral morphology of the 14H LPSO is clearly visualized by reconstructing 3D volumes. An existence of "dent-shaped" area was found in a 3D reconstructed volume for the first time. The edge of LPSO shows a characteristic triangular shape with an angle of 60°, which indicates that the growth front is parallel to {112¯0}Mg. It is suggested that in-plane irregular or characteristic shapes are related to the lateral growth mechanism of LPSO. Electron tomography has proven to be an indispensable tool to characterize in-plane structural information of LPSO formed in α-Mg matrix
Winter longitudinal variation in the body size of larval fishes in the Seto Inland Sea, Japan
This study revealed the spatial variation in abun-dance and body size of larval fishes in the Seto Inland Sea, Japan, in January 2014 and 2015. Fish larvae were col-lected by a 1.3-m-diameter ring net towed at the surface and at 10-m depth at 21 stations. The most dominant spe-cies was the sandlance Ammodytes japonicus, constituting 82% of total larval fish caught. The body size of A. japoni-cus was greater [ca. 9 mm total length (TL) in 2014] in eastern areas than in western areas (ca. 5 mm TL in 2014). This trend was also observed in rockfishes (Sebastiscus marmoratus and Sebastes inermis species complex), sug-gesting a common phenomenon in this region. Because the water temperature was lower in eastern areas, it is likely that the longitudinal differences in larval body size are attributable to earlier spawning in eastern areas caused by different temperature conditions.This work was partly supported by the Environment Research and Technology Development Fund (S-13) granted by the Ministry of the Environment, Japan.Electronic supplementary material: The online version of this article (doi:10.1007/s12562-017-1076-2) contains supplementary material, which is available to authorized users.アクセプト後にアブストラクト・キーワードの変更あり
Photoprecursor approach as an effective means for preparing multilayer organic semiconducting thin films by solution processes
[プレスリリース]「重ね塗り」で有機薄膜太陽電池を高性能化~光を当てると固まる材料使い、有効性を実証~プラスチック上にも作製可能 (2014/11/19)The vertical composition profile of active layer has a major effect on the performance of organic photovoltaic devices (OPVs). While stepwise deposition of different materials is a conceptually straightforward method for controlled preparation of multi-component active layers, it is practically challenging for solution processes because of dissolution of the lower layer. Herein, we overcome this difficulty by employing the photoprecursor approach, in which a soluble photoprecursor is solution-deposited then photoconverted in situ to a poorly soluble organic semiconductor. This approach enables solution-processing of the p-i-n triple-layer architecture that has been suggested to be effective in obtaining efficient OPVs. We show that, when 2,6-dithienylanthracene and a fullerene derivative PC71BM are used as donor and acceptor, respectively, the best p-i-n OPV affords a higher photovoltaic efficiency than the corresponding p-n device by 24% and bulk-heterojunction device by 67%. The photoprecursor approach is also applied to preparation of three-component p-i-n films containing another donor 2,6-bis(59-(2-ethylhexyl)-(2,29-bithiophen)-5-yl)anthracene in the i-layer to provide a nearly doubled efficiency as compared to the original two-component p-i-n system. These results indicate that the present approach can serve as an effective means for controlled preparation of well-performing multi-component active layers in OPVs and relatedorganic electronic devices
A discrepancy between clinical course and magnetic resonance imaging in a case of non-herpetic acute limbic encephalitis
We report the case of a 64-year old man who presented memory disturbance, low-grade fever, weight loss, and bilateral hand tremors for three months. He was diagnosed with non-herpetic acute limbic encephalitis (NHALE). Follow-up magnetic resonance imaging (MRI) revealed new lesions after symptomatic improvement following steroid pulse therapy. This may indicate that there is a time lag between the disturbance or recovery of neurons and astrocytes. Thus, other lesions might occasionally appear during convalescence in patients with NHALE, even if only minimal lesions were found on the initial MRI
Effect of Film-Forming Additive in Ionic Liquid Electrolyte on Electrochemical Performance of Si Negative-Electrode for LIBs
1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (EMI-TFSA) is one of the promising ionic liquids as electrolyte solvent to enhance the electrochemical performance of Si electrode for Li-ion batteries (LIBs) because of its low viscosity and high conductivity. However, it has low stability against reduction and its reductive decomposition product inhibits Li+ insertion to electrodes, leading to poor cycling stability. To exert a potential of EMI-TFSA, we employed vinylene carbonate (VC) as film-forming additive. Si electrode exhibited very high cycling stability and rate capability in 20 vol.% VC-added EMI-TFSA-based electrolyte. In addition, by replacing TFSA anion with bis(fluorosulfonyl)amide (FSA) for Li salt and ionic liquid solvent, an excellent cycling performance and outstanding rate capability was achieved. VC cannot only fabricate a good surface film but also lower the interaction between Li+ and FSA-, providing smooth desolvation of FSA- to obtain better high-rate performance. Non-flammability of the VC-added electrolytes was confirmed by fire resistance test in closed-system: no ignition was observed even at 300°C. Consequently, we found that mixture electrolyte consisted of EMI-based ionic liquid and VC, especially 1 M LiFSA/EMI-FSA with 20 vol.% VC, is a prospective candidate for simultaneously enhancing the electrochemical performance of Si electrode as well as safety of LIBs
- …