48 research outputs found

    CK2 Phosphorylates Sec31 and Regulates ER-To-Golgi Trafficking

    Get PDF
    Protein export from the endoplasmic reticulum (ER) is an initial and rate-limiting step of molecular trafficking and secretion. This is mediated by coat protein II (COPII)-coated vesicles, whose formation requires small GTPase Sar1 and 6 Sec proteins including Sec23 and Sec31. Sec31 is a component of the outer layer of COPII coat and has been identified as a phosphoprotein. The initiation and promotion of COPII vesicle formation is regulated by Sar1; however, the mechanism regulating the completion of COPII vesicle formation followed by vesicle release is largely unknown. Hypothesizing that the Sec31 phosphorylation may be such a mechanism, we identified phosphorylation sites in the middle linker region of Sec31. Sec31 phosphorylation appeared to decrease its association with ER membranes and Sec23. Non-phosphorylatable mutant of Sec31 stayed longer at ER exit sites and bound more strongly to Sec23. We also found that CK2 is one of the kinases responsible for Sec31 phosphorylation because CK2 knockdown decreased Sec31 phosphorylation, whereas CK2 overexpression increased Sec31 phosphorylation. Furthermore, CK2 knockdown increased affinity of Sec31 for Sec23 and inhibited ER-to-Golgi trafficking. These results suggest that Sec31 phosphorylation by CK2 controls the duration of COPII vesicle formation, which regulates ER-to-Golgi trafficking

    NS2 Protein of Hepatitis C Virus Interacts with Structural and Non-Structural Proteins towards Virus Assembly

    Get PDF
    Growing experimental evidence indicates that, in addition to the physical virion components, the non-structural proteins of hepatitis C virus (HCV) are intimately involved in orchestrating morphogenesis. Since it is dispensable for HCV RNA replication, the non-structural viral protein NS2 is suggested to play a central role in HCV particle assembly. However, despite genetic evidences, we have almost no understanding about NS2 protein-protein interactions and their role in the production of infectious particles. Here, we used co-immunoprecipitation and/or fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy analyses to study the interactions between NS2 and the viroporin p7 and the HCV glycoprotein E2. In addition, we used alanine scanning insertion mutagenesis as well as other mutations in the context of an infectious virus to investigate the functional role of NS2 in HCV assembly. Finally, the subcellular localization of NS2 and several mutants was analyzed by confocal microscopy. Our data demonstrate molecular interactions between NS2 and p7 and E2. Furthermore, we show that, in the context of an infectious virus, NS2 accumulates over time in endoplasmic reticulum-derived dotted structures and colocalizes with both the envelope glycoproteins and components of the replication complex in close proximity to the HCV core protein and lipid droplets, a location that has been shown to be essential for virus assembly. We show that NS2 transmembrane region is crucial for both E2 interaction and subcellular localization. Moreover, specific mutations in core, envelope proteins, p7 and NS5A reported to abolish viral assembly changed the subcellular localization of NS2 protein. Together, these observations indicate that NS2 protein attracts the envelope proteins at the assembly site and it crosstalks with non-structural proteins for virus assembly

    Renalase and its receptor, PMCA4b, are expressed in the placenta throughout the human gestation

    No full text
    Placental function requires organized growth, transmission of nutrients, and an anti-inflammatory milieu between the maternal and fetal interface, but placental factors important for its function remain unclear. Renalase is a pro-survival, anti-inflammatory flavoprotein found to be critical in other tissues. We examined the potential role of renalase in placental development. PCR, bulk RNA sequencing, immunohistochemistry, and immunofluorescence for renalase and its binding partners, PMCA4b and PZP, were performed on human placental tissue from second-trimester and full-term placentas separated into decidua, placental villi and chorionic plates. Quantification of immunohistochemistry was used to localize renalase across time course from 17 weeks to term. Endogenous production of renalase was examined in placental tissue and organoids. Renalase and its receptor PMCA4b transcripts and proteins were present in all layers of the placenta. Estimated RNLS protein levels did not change with gestation in the decidual samples. However, placental villi contained more renalase immunoreactive cells in fetal than full-term placental samples. RNLS co-labeled with markers for Hofbauer cells and trophoblasts within the placental villi. Endogenous production of RNLS, PMCA4b, and PZP by trophoblasts was validated in placental organoids. Renalase is endogenously expressed throughout placental tissue and specifically within Hofbauer cells and trophoblasts, suggesting a potential role for renalase in placental development and function. Future studies should assess renalase's role in normal and diseased human placenta

    Secondary Amino Alcohols: Traceless Cleavable Linkers for Use in Affinity Capture and Release

    No full text
    Capture and release of peptides is often a critical operation in the pathway to discovering materials with novel functions. However, the best methods for efficient capture impede facile release. To overcome this challenge, we report linkers based on secondary amino alcohols for the release of peptides after capture. These amino alcohols are based on serine (seramox) or isoserine (isoseramox) and can be incorporated into peptides during solid-phase peptide synthesis through reductive amination. Both linkers are quantitatively cleaved within minutes under NaIO4 treatment. Cleavage of isoseramox produced a native peptide N-terminus. This linker also showed broad substrate compatibility; incorporation into a synthetic peptide library resulted in the identification of all sequences by nanoLC-MS/MS. The linkers are cell compatible; a cell-penetrating peptide that contained this linker was efficiently captured and identified after uptake into cells. These findings suggest that such secondary amino alcohol based linkers might be suitable tools for peptide-discovery platforms.National Institutes of Health (Grants R01 GM110535, F32 GM133073)National Science Foundation (Grants 4000057398, 4000057441

    Divergent Stereoselectivity in Phosphothreonine (pThr)-Catalyzed Reductive Aminations of 3‑Amidocyclohexanones

    No full text
    Phosphothreonine (pThr)-embedded peptide catalysts are found to mediate the reductive amination of 3-amidocyclohexanones with divergent selectivity. The choice of peptide sequence can be used to alter the diastereoselectivity to favor either the <i>cis</i>-product or <i>trans</i>-product, which are obtained in up to 93:7 er. NMR studies and DFT calculations are reported and indicate that both pathways rely on secondary interactions between substrate and catalyst to achieve selectivity. Furthermore, catalysts appear to accomplish a parallel kinetic resolution of the substrates. The facility for phosphopeptides to tune reactivity and access multiple products in reductive aminations may translate to the diversification of complex substrates, such as natural products, at numerous reactive sites
    corecore