104 research outputs found

    Ecological Processes in Forest Gap Models — Analysis and Improvement

    Full text link
    In the last two decades, forest succession models of the JABOWA/FORET type ("gap models") have grown to rather complex models. This makes simulation studies tedious, o the least because of the long simulation times and the inflexibility in experimenting with model modi-fications. Thus, only little could be learned about the relative importance of the numerous ecologi

    A Case Study of the Effects of CO2-Induced Climatic Warming on Forest Growth and the Forest Sector : A. Productivity Reactions of Northern Boreal Forests.

    Get PDF
    The purpose of this section is to evaluate the effects of changes in climate under the GISS 2 × CO2 scenario (considered in Section 3) on the productivity of boreal forests. Some of the results reported here will be used as inputs to a further set of experiments concerned with the effect of productivity changes on forestry as an economic activity (see Section 6). Together Sections 5 and 6 provide a case study (at a hemispheric scale) of the advantages and limitations of linking biophysical and economic models in attempts to assess the effects of climatic change

    Crown Plasticity and Competition for Canopy Space: A New Spatially Implicit Model Parameterized for 250 North American Tree Species

    Get PDF
    BACKGROUND: Canopy structure, which can be defined as the sum of the sizes, shapes and relative placements of the tree crowns in a forest stand, is central to all aspects of forest ecology. But there is no accepted method for deriving canopy structure from the sizes, species and biomechanical properties of the individual trees in a stand. Any such method must capture the fact that trees are highly plastic in their growth, forming tessellating crown shapes that fill all or most of the canopy space. METHODOLOGY/PRINCIPAL FINDINGS: We introduce a new, simple and rapidly-implemented model--the Ideal Tree Distribution, ITD--with tree form (height allometry and crown shape), growth plasticity, and space-filling, at its core. The ITD predicts the canopy status (in or out of canopy), crown depth, and total and exposed crown area of the trees in a stand, given their species, sizes and potential crown shapes. We use maximum likelihood methods, in conjunction with data from over 100,000 trees taken from forests across the coterminous US, to estimate ITD model parameters for 250 North American tree species. With only two free parameters per species--one aggregate parameter to describe crown shape, and one parameter to set the so-called depth bias--the model captures between-species patterns in average canopy status, crown radius, and crown depth, and within-species means of these metrics vs stem diameter. The model also predicts much of the variation in these metrics for a tree of a given species and size, resulting solely from deterministic responses to variation in stand structure. CONCLUSIONS/SIGNIFICANCE: This new model, with parameters for US tree species, opens up new possibilities for understanding and modeling forest dynamics at local and regional scales, and may provide a new way to interpret remote sensing data of forest canopies, including LIDAR and aerial photography

    Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China

    Get PDF
    Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change

    CCAAT/Enhancer Binding Protein alpha uses distinct domains to prolong pituitary cells in the Growth 1 and DNA Synthesis phases of the cell cycle

    Get PDF
    BACKGROUND: A number of transcription factors coordinate differentiation by simultaneously regulating gene expression and cell proliferation. CCAAT/enhancer binding protein alpha (C/EBPα) is a basic/leucine zipper transcription factor that integrates transcription with proliferation to regulate the differentiation of tissues involved in energy balance. In the pituitary, C/EBPα regulates the transcription of a key metabolic regulator, growth hormone. RESULTS: We examined the consequences of C/EBPα expression on proliferation of the transformed, mouse GHFT1-5 pituitary progenitor cell line. In contrast to mature pituitary cells, GHFT1-5 cells do not contain C/EBPα. Ectopic expression of C/EBPα in the progenitor cells resulted in prolongation of both growth 1 (G1) and the DNA synthesis (S) phases of the cell cycle. Transcription activation domain 1 and 2 of C/EBPα were required for prolongation of G1, but not of S. Some transcriptionally inactive derivatives of C/EBPα remained competent for G1 and S phase prolongation. C/EBPα deleted of its leucine zipper dimerization functions was as effective as full-length C/EBPα in prolonging G1 and S. CONCLUSION: We found that C/EBPα utilizes mechanistically distinct activities to prolong the cell cycle in G1 and S in pituitary progenitor cells. G1 and S phase prolongation did not require that C/EBPα remained transcriptionally active or retained the ability to dimerize via the leucine zipper. G1, but not S, arrest required a domain overlapping with C/EBPα transcription activation functions 1 and 2. Separation of mechanisms governing proliferation and transcription permits C/EBPα to regulate gene expression independently of its effects on proliferation

    Predicting species dominance shifts across elevation gradients in mountain forests in Greece under a warmer and drier climate

    Get PDF
    The Mediterranean Basin is expected to face warmer and drier conditions in the future, following projected increases in temperature and declines in precipitation. The aim of this study is to explore how forests dominated by Abies borisii-regis, Abies cephalonica, Fagus sylvatica, Pinus nigra and Quercus frainetto will respond under such conditions. We combined an individual-based model (GREFOS), with a novel tree ring data set in order to constrain tree diameter growth and to account for inter- and intraspecific growth variability. We used wood density data to infer tree longevity, taking into account inter- and intraspecific variability. The model was applied at three 500-m-wide elevation gradients at Taygetos in Peloponnese, at Agrafa on Southern Pindos and at Valia Kalda on Northern Pindos in Greece. Simulations adequately represented species distribution and abundance across the elevation gradients under current climate. We subsequently used the model to estimate species and functional trait shifts under warmer and drier future conditions based on the IPCC A1B scenario. In all three sites, a retreat of less drought-tolerant species and an upward shift of more drought-tolerant species were simulated. These shifts were also associated with changes in two key functional traits, in particular maximum radial growth rate and wood density. Drought-tolerant species presented an increase in their average maximal growth and decrease in their average wood density, in contrast to less drought-tolerant species

    Effects of Light Component and Water Stress on Photosynthesis of Amazon Rainforests During the 2015/2016 El Niño Drought

    Full text link
    ©2019. American Geophysical Union. All Rights Reserved. Whether enhanced sunshine increases photosynthesis in Amazon rainforests during drought is unclear. Here we used a light component-based two-leaf-photosynthesis model, driven with climate data and satellite vegetation data, to inspect the controlling mechanisms among climate factors on gross primary production (GPP) during the 2015/2016 El Niño drought event. We found that simulated GPP and Moderate Resolution Imaging Spectroradiometer enhanced vegetation index indicated an Amazonian “browning” and not a “green up” during the 2015/2016 El Niño year relative to the 2011–2014 interval. The result shows that, along with intensified sunlight, diffuse sunlight and diffuse fraction as well as canopy light use efficiency decreased, which further produced a decreased potential GPP* (determined by light components and leaf area index of shaded and sunlit leaves). The decreased GPP* and drought-induced water stress jointly reduced canopy photosynthesis of Amazon rainforests during the 2015/2016 drought. The light component variations caused a reduction in GPP but with a magnitude inferior to the GPP reduction from water stress. These findings suggest that intensified sunlight did not enhance photosynthesis of Amazon rainforests and highlight the important role of light components in interannual and seasonal variations of photosynthesis in Amazon rainforests
    corecore