6 research outputs found

    Comparison of Enzymatic and Non-Enzymatic Means of Dissociating Adherent Monolayers of Mesenchymal Stem Cells

    Get PDF
    The dissociation of adherent mesenchymal stem cell (MSC) monolayers with trypsin and enzyme-free dissociation buffer was compared. A significantly lower proportion of viable cells were obtained with enzyme-free dissociation buffers compared to trypsin. Subsequently, the dissociated cells were re-seeded on new cell culture dishes and were subjected to the MTT assay 24 h later. The proportion of viable cells that reattached was significantly lower for cells obtained by dissociation with enzyme-free dissociation buffer compared to trypsin. Frozen–thawed MSC displayed a similar trend, yielding consistently higher cell viability and reattachment rates when dissociated with trypsin compared to enzyme-free dissociation buffer. It was also demonstrated that exposure of trypsin-dissociated MSC to enzyme-free dissociation buffer for 1 h had no significant detrimental effect on cell viability

    Temperature and calcium ions affect aggregation of mesenchymal stem cells in phosphate buffered saline

    No full text
    Bone marrow-derived mesenchymal stem cells (MSC) are being extensively studied as potential therapeutic agents for various diseases and have demonstrated tremendous promise to date. To reduce immunological and inflammatory reaction upon delivery of MSC in situ, the cells are often suspended in protein-free and nutrient-poor buffered saline solution at high titers and kept on ice (0 °C) until completion of the transplantation procedure. This study investigated the effects of suspending MSC (5 × 106 cells/mL) in phosphate buffered saline (PBS) with and without calcium, over a time course of 90 and 180 min, at temperatures of 0 and 37 °C. The results at 0 °C showed a small but significant decrease in cell viability within calcium-free PBS after 180 min, whereas no significant changes in cell viability were observed with PBS containing calcium. Additionally, it was observed that significant aggregation of MSC into cellular clumps occurred when incubated in PBS at 0 °C, with a higher degree of aggregation occurring under calcium-free conditions. By contrast at 37 °C, there was a more pronounced decrease in cell viability after 90 and 180 min, but lesser aggregation of MSC both in the presence and absence of calcium. The aggregation of MSC into cellular clumps could pose an embolic hazard if delivered into the arterial vasculature in cardiac applications, can clog-up injection or infusion catheters utilized for cell delivery during surgery, and can also possibly reduce the overall efficacy of transplantation therapy
    corecore