13 research outputs found

    Limitations on ACI Code Minimum Thickness Requirements for Flat Slab

    Get PDF
    Reinforced concrete two-way flat slabs are considered one of the most used systems in the construction of commercial buildings due to the ease of construction and suitability for electrical and mechanical paths. Long-term deflection is an essential parameter in controlling the behavior of this slab system, especially with long spans. Therefore, this study is devoted to investigating the validation of the ACI 318-19 Code long-term deflection limitations of a wide range of span lengths of two-way flat slabs with and without drop panels. The first part of the study includes nonlinear finite element analysis of 63 flat slabs without drops and 63 flat slabs with drops using the SAFE commercial software. The investigated parameters consist of the span length (4, 5, 6, 7, 8, 9, and 10m), compressive strength of concrete (21, 35, and 49 MPa), the magnitude of live load (1.5, 3, and 4.5 kN/m2), and the drop thickness (0.25tslab, 0.5tslab, and 0.75tslab). In addition, the maximum crack width at the top and bottom are determined and compared with the limitations of the ACI 224R-08. The second part of this research proposes modifications to the minimum slab thickness that satisfy the permissible deflection. It was found, for flat slabs without drops, the increase in concrete compressive strength from 21MPa to 49MPa decreases the average long-term deflection by (56, 53, 50, 44, 39, 33 and 31%) for spans (4, 5, 6, 7, 8, 9, and 10 m) respectively. In flat slab with drop panel, it was found that varying drop panel thickness t2 from 0.25  to 0.75  decreases the average long-term deflection by (45, 41, 39, 35, 31, 28 and 25%) for span lengths (4, 5, 6, 7, 8, 9 and 10 m) respectively. Limitations of the minimum thickness of flat slab were proposed to vary from Ln/30 to Ln/19.9 for a flat slab without a drop panel and from Ln/33 to Ln/21.2 for a flat slab with drop panel. These limitations demonstrated high consistency with the results of Scanlon and Lee's unified equation for determining the minimum thickness of slab with and without drop panels. Doi: 10.28991/cej-2021-03091769 Full Text: PD

    Applying of No-fines concretes as a porous concrete in different construction application

    Get PDF
    Recently, the demands on the concretes with no fines aggregate has been increased as a results of the industry revolution. Many researchers are trying to recycle the concretes and rubble. In addition, the increase in noise in the surrounding environment as a result of the growing population and cars has generated an urgent need to produce concretes characterized by good sound insulation. No-fines concretes is considered as a kind of porous lightweights concretes, gained by removing the sand from the ordinary concretes mixture. The aim of this study is replace the coarse aggregate by waste ceramics in order to reduce the wastes as well as investigate strengths against compression s, density and porosity of No-fines concretes before and after substitution the coarse aggregate by waste ceramics. The methodology of this research paper has been mainly depending on strengths against compression s test and the measured ultrasonic pulse velocity as well as the density. The investigational research has been implemented by 54 samples cast by six various blending proportion consisting of (cement, coarse aggregate, water) utilizing ceramic wastes (CWs) as a substation ratio of coarse aggregates in making concretes free of fine aggregate, so that the proportions of ceramic residues are (0, 10%, 20, 30, 40, 50) as a partial substation of the coarse aggregates and examined at the ages of (7, 28 and 90) days. The mechanism of failure has been detected and categorized beside the concrete’s density and void percentage have been collected. The results show that, the increasing the substitution ratio for waste ceramic within the no-fine mixtures cause a decrease in the density with increasing the strengths against compression s for the specimens

    Utilization of High Volume Fraction of Binary Combinations of Supplementary Cementitious Materials in the Production of Reactive Powder Concrete

    Get PDF
    The reactive powder concrete (RPC) is one of the special concrete types that characteristics with high cement content which means high production cost and CO2 emissions to the atmosphere. Therefore, to enhance the environment as well as to develop green RPC, alternatives to cement, such as supplementary cementitious materials (SCMs) were used. Limited studies addressed the use of a high volume fraction of SCMs as a binary combination in the production of RPC. Thus, this study aims to replace a high percentage of cement (50%) with binary combinations of silica fume (SF), type F fly ash (FA) and metakaolin (MK). The experimental program included two phases. In phase one, two groups (SF+FA and MK+FA) were cast without steel fibers. Based on group performance in the first phase, one group was chosen to be used with steel fibers in the second phase. The flow rate, compressive and flexural strengths, density, ultrasonic pulse velocity and dynamic modulus of elasticity tests were conducted. The phase one results showed that SF+FA combination mixtures had better performance than MK+FA mixtures thus they were selected to be used in the second phase (with the addition of 1% volumetric fraction micro steel fibers). Results indicated that it is possible to produce sustainable RPC in which the cement can be replaced with 30% SF and 20% FA (the total replacement is 50%) in the presence of 1% steel fibers with a remarkable enhancement in compressive strength and flexural strength reached up to 44% and 10%, respectively

    Improving the mechanical behavior of pervious concrete using polypropylene and waste rope fibers

    Get PDF
    Urbanization has led to the damage of infrastructure due to floods and water accumulation on roads and sidewalks. To address this problem, pervious concrete was designed to drain water smoothly. However, pervious concrete has certain drawbacks, such as brittleness and poor tensile strength. To overcome these shortcomings, it is reinforced with fiber. Polypropylene fibers are commonly used for this purpose. On the other hand, managing waste plastic is a major problem as it has a significant environmental impact and requires large areas for landfills. Waste rope fibers (WRF) are among these wastes. There have been very limited investigations on the use of WRF in pervious concrete. Therefore, this study aims to investigate the effect of polypropylene (PP) fibers and waste rope fibers (WRF) on the mechanical and structural properties of pervious concrete. PP and WRF fibers were added in proportions of 0.25%, 0.5%, and 0.75% by volume of concrete. A range of tests (compressive strength, tensile strength, density, permeability, load-deflection behavior, and ductility) were conducted to evaluate the resulting concrete. The results indicated that although the permeability was decreased by adding fibers, the fibers significantly improved the mechanical and structural properties of pervious concrete. The highest values for compressive strength, splitting tensile strength, and ultimate load were 83.4%, 72.4%, and 89.62% for PP fibers-based mixtures, while they were 49.9%, 41.9%, and 102.83% for mixtures made with WRF at an addition rate of 0.5% for both types of fibers. The results also demonstrated that the existence of fibers improved the ductility of the concrete, which means that WRF can be used successfully in producing eco-friendly pervious concrete with better performance than the control specimen.</jats:p

    Treatment of Forty Adult Patients with Hodgkin Disease; Baghdad Teaching Hospital Experience

    Get PDF
    Background: Hodgkin disease was the first cancer in which the curative potential of combination chemotherapy was demonstrated. The affected patients are often young and there is a great potential for adding years of productive life by giving curative therapy even when the disease is advanced. Objective: to describe the experience of the hematology unit,Baghdad Teaching Hospital, in the management of 40 adult patients with Hodgkin disease. Patients and Methods: a retrospective cohort study of forty adult Iraqi patients with Hodgkin disease between 2005 and 2013 in the hematology unit. Patients were treated initially with 6-8 cycles of ABVD chemotherapy protocol (doxorubicine+ bleomycin+ vinblastin+ dacarbazine) , nine patients received additional involved field radiotherapy for residual masses or bulky disease. Overall survival and progression free survivals were estimated using Kaplan Meier survival plot. Results: The mean age was 28.6±12.88 years with females forming 61.5% of patients, mean duration of follow up was 27.9± 20.6 months. Staging showed that 55% and 27.5% had stage II and III respectively. B symptoms were found in 72.5% patients , bulky disease in 42.5% patients. Complete Response+ Complete Response undetermined was seen in 85% of cases. First Relapse occurred in 14%, and death in 7.5% of the patients. The 8 year overall survival and progression free survival were 82% and 50% respectively while the mean overall survival and progression free survival times were 84.7 and 59.9 months respectively. Conclusion: The results of the treatment of adult patients with Hodgkin disease in our unit is rather comparable to the results from other studies

    Development of eco-friendly wall insulation layer utilising the wastes of the packing industry

    Get PDF
    Efficient thermal insulation materials considerably lower power consumption for heating and cooling of buildings, which in turn minimises CO2 emissions and improves indoor comfort conditions. However, the selection of suitable insulation materials is governed by several factors, such as the environmental impact, health impact, cost and durability. Additionally, the disposal of used insulation materials is a major factor that affects the selection of materials because some materials could be very toxic for humans and the environment, such as asbestos-containing materials. Therefore, there is a continuous research effort, in both industry and academia, to develop sustainable and affordable insulation materials. In this context, this work aims at utilising the packing industry wastes (cardboard) to develop an eco-friendly insulation layer, which is a biodegradable material that can be disposed of safely after use. Experimentally, wasted cardboard was collected, cleaned, and soaked in water for 24 h. Then, the wet cardboard was minced and converted into past papers, then cast in square moulds and left in a ventilated oven at 75 °C to dry before de-moulding them. The produced layers were subjected to a wide range of tests, including thermal conductivity, acoustic insulation, infrared imaging and bending resistance. The obtained results showed the developed material has a good thermal and acoustic insulation performance. Thermally, the developed material had the lowest thermal conductivity (λ) (0.039 W/m.K) compared to the studied traditional materials. Additionally, it successfully decreased the noise level from 80 to about 58 dB, which was better than the efficiency of the commercial polyisocyanurate layer. However, the bending strength of the developed material was a major drawback because the material did not resist more than 0.6 MPa compared to 2.0 MPa for the commercial polyisocyanurate and 70.0 MPa for the wood boards. Therefore, it is recommended to investigate the possibility of strengthening the new material by adding fibres or cementitious materials

    Inhibition growth of Candida albicans which isolated from renal failure and controlling by silver nanoparticles extracted from Syzygium aromaticum

    No full text
    The samples of C. albicans were selected for&nbsp; a sensitivity test with three concentrations were selected, as follows (50 ,100 ,200) mg/L. the upper inhibition zone is 200 mg/L which increased as compared with other concentrations, the inhibition percentage used to compare between all data using SPSS V.25 computer software using a T-test. P - values of less than 0.05 was considered statistically significant. Green synthesis using to produce silver nanoparticles by Syzygium aromaticum after adding the plant extract obtained of a silver nanoparticles when&nbsp; adding&nbsp; 4ml extract of S. aromaticum and&nbsp; the best pH to produce (AgNps) is 8 with wavelength 435 nm and 1 molarity by UV-visible devise. Field emission-scanning electron microscope (FESEM) revealed damage of the cells and inhibition biofilm formation of C.albicans when treated with AgNPs produce by S. aromaticum&nbsp; &nbsp;as compared with control of&nbsp; C.albicans which un treated with AgNPs,the inhibition growth diameter is 19mm&nbsp; when using 200 mg/L caused the upper inhibition zone as compared with other concentrations

    Production of Ultra-High-Performance Concrete with Low Energy Consumption and Carbon Footprint Using Supplementary Cementitious Materials Instead of Silica Fume: A Review

    No full text
    The increase in cement production as a result of growing demand in the construction sector means an increase in energy consumption and CO2 emissions. These emissions are estimated at 7% of the global production of CO2. Ultra-high-performance concrete (UHPC) has excellent mechanical and durability characteristics. Nevertheless, it is costly and affects the environment due to its high amount of cement, which may reach 800–1000 kg/m3. In order to reduce the cement content, silica fume (SF) was utilized as a partial alternative to cement in the production of UHPC. Nevertheless, SF is very expensive. Therefore, the researchers investigated the use of supplementary cementitious materials cheaper than SF. Very limited review investigates addressed the impact of such materials on different properties of UHPC in comparison to that of SF. Thus, this study aims to summarize the effectiveness of using some common supplementary cementitious materials, including fly ashes (FA), ground granulated blast furnace slag (GGBS), metakaolin (MK) and rice husk ashes (RHA) in the manufacturing of UHPC, and comparing the performance of each material with that of SF. The comparison among these substances was also discussed. It has been found that RHA is considered a successful alternative to SF to produce UHPC with similar or even higher properties than SF. Moreover, FA, GGBS and MK can be utilized in combination with SF (as a partial substitute of SF) as a result of having less pozzolanic activity than SF
    corecore