15 research outputs found

    ICDP workshop on scientific drilling of Nam Co on the Tibetan Plateau: 1 million years of paleoenvironmental history, geomicrobiology, tectonics and paleomagnetism derived from sediments of a high-altitude lake

    Get PDF
    The Tibetan Plateau is of peculiar societal relevance as it provides freshwater from the so-called “Water Tower of Asia” to a large portion of the Asian population. However, future climate change will affect the hydrological cycle in this area. To define parameters for future climate change scenarios it is necessary to improve the knowledge about thresholds, timing, pace and intensity of past climatic changes and associated environmental impacts. Sedimentary archives reaching far back in time and spanning several glacial–interglacial cycles such as Nam Co provide the unique possibility to extract such information. In order to explore the scientific opportunities that an ICDP drilling effort at Nam Co would provide, 40 scientists from 13 countries representing various scientific disciplines met in Beijing from 22 to 24 May 2018. Besides paleoclimatic investigations, opportunities for paleomagnetic, deep biosphere, tectonic and paleobiological studies were discussed. After having explored the technical and logistical challenges and the scientific opportunities all participants agreed on the great value and need to drill this extraordinary archive, which has a sediment thickness of more than 1 km, likely covering more than 1 Ma

    Laboratory Study of Deformational Characteristics and Acoustic Emission Properties of Coal with Different Strengths under Uniaxial Compression

    No full text
    Acoustic emission (AE) can reflect the dynamic changes in a material’s structure, and it has been widely used in studies regarding coal mechanics, such as those focusing on the influence of loading rate or water content change on the mechanical properties of coal. However, the deformational behavior of coals with various strengths differs due to the variation in microstructure. Hard coal presents brittleness, which is closely related to certain kinds of geological disasters such as coal bursts; soft coal exhibits soft rock properties and large deformation mechanical characteristics. Therefore, conclusions drawn from AE characteristics of a single coal sample have application limitations. This paper studies the deformation patterns and AE characteristics of coals with different strengths. A uniaxial compression experiment was carried out using coal samples with average uniaxial compressive strengths of 30 MPa and 10 MPa; the SAEU2S digital AE system was used to measure the AE counts, dissipation energy, and fracturing point distributions at each deformation stage of the different coals. The results show that the bearing capacity of hard coal is similar to that of the elastic stage and plastic deformation stage, but it may lose its bearing capacity immediately after failure. Soft coal has a relatively distinct stress-softening deformation stage and retains a certain bearing capacity after the peak. The AE counts and dissipation energy of hard coal are significantly higher than those of soft media, with average increases of 49% and 26%, respectively. Via comparative analysis of the distribution and development of internal rupture points within soft coal and hard coal at 15%, 70%, and 80% peak loads, it was observed that hard coal has fewer rupture points in the elastic deformation stage, allowing it to maintain good integrity; however, its rupture points increase rapidly under high stress. Soft coal produces more plastic deformation under low loading conditions, but the development of the fracture is relatively slow in the stress-softening stage. We extracted and summarized the AE characteristics discussed in the literature using one single coal sample, and the results support the conclusions presented in this paper. This study subdivided the deformation process and AE characteristics of soft and hard coals, providing a theoretical guidance and technical support for the application of AE technology in coal with different strengths

    Laboratory study of deformation behaviour of two new reinforcing polymeric tsls and their potential application in deep underground coal mine

    No full text
    Thin spray-on liner (TSL) is a surface protection technology used by spraying a polymer film, which is widely used for mine airtightness and waterproofing. A reinforcing TSL can replace steel mesh, which is a new method for roadway support. This paper reviews the development of a reinforcing TSL. Considering the deterioration of geological conditions in deep underground mining and the demand for reinforcing automation, two kinds of polymeric reinforcing TSL (RPTSL) materials are developed. The mechanical characteristics of the new TSL materials are studied experimentally. Results show that the average compressive strength, tensile strength, cohesion, and internal friction angle of the two TSL materials are 52 and 32 MPa, 12 and 8 MPa, 6.2 and 17.2 MPa, and 33.6â—¦ and 25.9â—¦, respectively. The bonding strength between the two materials and coal is greater than the tensile strength of coal itself, and the mechanical properties of the material for comparison are lower than those of both materials. Based on the TSL support mechanism, we examine the application of the two TSL materials to the mining environment and compare the mechanical properties of polymer materials and cement-based materials. The advantages of polymer materials include versatile mechanical properties, good adhesion, and high early strength. This study provides a new support material to replace steel mesh for roadway surface support, which satisfies the needs of different surface support designs under complex geological conditions, and promotes the automation of roadway support

    Design principle and engineering practice of rock bolting to prevent coal bump from rib coal massive slippage

    No full text
    Rock burst is one of the disasters that seriously affect the safe and effective mining of coal in mine mining. It is of great significance and value to study the principle and technology of bolt anti-impact support to prevent and control the rock burst disaster in roadway. Through the summary and analysis of the geological conditions and failure characteristics of the rock burst of the whole coal body in the roadway, it is considered that the hard roof and hard coal seam are the important geological characteristics of this type of rock burst, and the overall slippage of the coal body in the roadway is the main impact failure characteristics. On this basis, taking the sliding coal body of roadway side as the research object, the mechanical model of roof-roadway-floor composite structure is established, and the limit equilibrium equation of horizontal sliding of roadway side coal body is established, and each parameter is analyzed. The results show that due to the rebound of the roof, the vertical pressure of the roadway side coal body is reduced, and the roadway side coal body is pushed into the roadway by the tectonic stress to cause rock burst. Based on the occurrence mechanism model, it is considered that the current bolt support design system has some shortcomings in preventing and controlling the rock burst of the coal body in the roadway. Based on its occurrence and failure characteristics, the design principle of bolt anti-impact support for the overall slippage type rock burst of the coal body in the roadway is established, that is, the anchoring ends of the roof and bottom bolts are respectively penetrated into the stable roof and floor, and the long anchor cable is used to replace the middle side bolt to provide the anti-impact effect of bolt support. Based on the newly established design method of bolt anti-scour support, taking the anti-scour support of 7305 working face of Kongzhuang Coal Mine in Datun Mining Area as the engineering background, the anti-scour design is adopted in the bolt support of roadway side in the wide coal pillar section. The roof and bottom bolts and reinforcing anchor cables are anchored inside the roof and floor, which can effectively absorb the sliding kinetic energy of the coal body and improve the safety

    Anchorage performance of large-diameter FRP bolts and their application in large deformation roadway

    No full text
    In underground coal mines, fibre reinforced polymer (FRP) bolt is ideal for mined rib reinforcements as it can prevent gas explosions caused by shearer frictional spark. With increasing mining depth, small diameter FRP bolts used in shallow underground mining cannot fulfil the rib support requirements. Under the engineering background of deep underground shortwall mining in Wudong coal mine, this paper systematically studies Φ27 mm FRP bolt support for large deformation coal rib. Specimens with a fan-shaped cross-section were used to enable the tensile testing of the bolt rod, the measured average tensile strength of the studied FRP bolt was (486.1 ± 9.6) MPa with a maximum elongation of 5.7%±0.6%. The shear strength of the bolt was measured as approximately 258 MPa using a self-made double shear testing apparatus. Based on the equivalent radial stiffness principle, a laboratory short encapsulation pullout test (SEPT) method for rib bolting has been developed undertaken consideration of the mechanical properties of the coal seam. Results showed that the average peak anchorage forces of the Φ27 mm FRP bolt and Φ20 mm steel rebar bolt were 108.4 and 66.4 kN, respectively, which were agreed with the theoretical calculations and field measurements. Based on theoretical analysis of the loading states of the bolt under site conditions, bolting method of full-length resin grouting was adopted to offset the weaknesses of the FRP bolt. Numerical method was employed to compare the bolting effect using Φ27 mm FRP bolts and steel rebar bolts. Large diameter FRP bolting was determined as the optimum rib support scheme to increase the productivity of the coal mine and to enhance the ground control capability for +425 level mining roadways. This study provides the laboratory testing design and theoretical prediction of large diameter FRP bolts used for rib support in large deformation roadways
    corecore