125 research outputs found

    Combination of thymosin α1 with conventional therapy improves APC and IL-1R1 levels in children with severe pneumonia

    Get PDF
    Purpose: To investigate the effect of a combination of thymosin α1 with  conventional regimen on APC and IL-1R1 levels in children with severe pneumonia, and to provide a reference for its clinical treatment.Methods: A total of 96 children with severe pneumonia over a period of two years were divided into control and observation groups (48 cases per  group) by random number table method. The patients consisted of 46 males and 50 females within the age range of 0.1 - 6 years (mean age = 3.0 ± 1.2 years), and mean duration of 13.4 ± 2.2 days). Their acute physiology and chronic health evaluation II (APACHE II) was 20.3 ± 3.2 points. Patients in the control group were placed on conventional treatment programs, while those in the observation group, in addition to the  conventional treatments, received thymosin α1 (subcutaneous injection of thymosin α1 at a dose of 1.5 mg per injection) twice daily for the first 3 days, then once daily until the 7th day, after which the adverse reactions were observed and treated. Pulmonary function indices, and levels of APC, and IL-1R1 were also determined in the patients’ sera before and after the treatment regime.Results: The clinical efficacy of the observation group was significantly better (p < 0.05) than that of control. There were no significant differences (p > 0.05) in the indices of pulmonary function (maximal inspiratory and expiratory pressure, and peak expiratory flow) between the two groups before treatment. However, after treatment they were significantly higher (p < 0.05) in the observation group than in control. There were no significant differences (p > 0.05) in APC and IL-1R1 levels between the two groups before treatment, but after treatment, while the level of APC in the observation group was significantly increased (p < 0.05), the IL-1R1 level was significantly decreased (p < 0.05), when compared to the control group. Both groups showed no obvious adverse reactions during the treatmentregime.Conclusion: Combining thymosin α1 with routine treatment in the  management of children with severe pneumonia can significantly alleviate the symptoms of patients, greatly stimulate recovery of pulmonary function, improve APC and IL-1R1 levels, and prevent inflammation.Keywords: Pneumonia, Thymosin α1, Routine treatment, Inflammatory factors, Pulmonary functio

    Multi-scenario renewable energy absorption capacity assessment method based on the attention-enhanced time convolutional network

    Get PDF
    As the penetration rate of renewable energy in modern power grids continues to increase, the assessment of renewable energy absorption capacity plays an increasingly important role in the planning and operation of power and energy systems. However, traditional methods for assessing renewable energy absorption capacity rely on complex mathematical modeling, resulting in low assessment efficiency. Assessment in a single scenario determined by the source-load curve is difficult because it fails to reflect the random fluctuation characteristics of the source-load, resulting in inaccurate assessment results. To address and solve the above challenges, this paper proposes a multi-scenario renewable energy absorption capacity assessment method based on an attention-enhanced time convolutional network (ATCN). First, a source-load scene set is generated based on a generative adversarial network (GAN) to accurately characterize the uncertainty on both sides of the source and load. Then, the dependence of historical time series information in multiple scenarios is fully mined using the attention mechanism and temporal convolution network (TCN). Finally, simulation and experimental verification are carried out using a provincial power grid located in southwest China. The results show that the method proposed in this article has higher evaluation accuracy and speed than the traditional model

    Optimization of multi-temporal generation scheduling in power system under elevated renewable penetrations: A review

    Get PDF
    The traditional power generation mix and the geographical distribution of units have faced structural reform with the increasing renewables. The existing scheduling schemes confront the optimization challenges of multi-source collaborative and multi-temporal coordination. This paper reviews the optimization of generation scheduling in power systems with renewables integration in different time scales, which are medium- and long-term, short-term and real-time, respectively. First, the scheduling model and method are summarized. The connections and differences of the multi-source mathematic model with uncertainty, as well as the market mechanism, including thermal power, hydroelectric power, wind power, solar energy, and energy storage, are also indicated. Second, the scheduling algorithm and approach are sorted out from the two dimensions of certainty and uncertainty. The innovation and difference in algorithm between the traditional scheduling and the scheduling problem with renewables are presented. Meanwhile, the interaction and coupling relationship among the different time scales are pointed out in each section. The challenges and shortcomings of current research and references future directions are also provided for dispatchers

    A safety check method to maximize the effective reserve by optimizing the power of the tie-line in the power market

    Get PDF
    To ensure the stability of the electricity spot market and the safety of the provincial and regional power systems, a safety check method is proposed to maximize the effective reserve resources in the power system by optimizing the power of each tie-line. This safety check method accurately models the tie-line equipment and the effective reserve resources and is coupled with each constraint of the electricity spot market clearing model to form a safety check algorithm to optimize the power of tie-line power. The model involved in this paper is a linear model, which has a clear implementation method in practical dispatching applications. Through this method, the power configuration scheme of each tie-line to meet the electricity spot market constraints can be obtained, and the safety check results have the executability of the power market. The rationality and feasibility of the safety check algorithm results are verified by simulating the provincial-scale electricity spot market. According to the simulation results, this method can release effective reserve resources and provide more guarantees for the safe operation of the power grid. In addition, this method can save up to 4.9% of the total operation cost of the power system and improve the dispatching economy of the power system. This method is of great significance to ensure the safe operation of the power system and the day-ahead market and real-time market scheduling in the actual power spot system. In addition, this method also has great guiding significance for the analysis of the actual reserve situation of the power market after the event

    N-myristoylation of Antimicrobial Peptide CM4 Enhances Its Anticancer Activity by Interacting With Cell Membrane and Targeting Mitochondria in Breast Cancer Cells

    Get PDF
    Development of antimicrobial peptides (AMPs) as highly effective and selective anticancer agents would represent great progress in cancer treatment. Here we show that myristoyl-CM4, a new synthetic analog generated by N-myristoylation of AMPs CM4, had anticancer activity against MCF-7, MDA-MB-231, MX-1 breast cancer cells (IC50 of 3–6 μM) and MDA-MB-231 xenograft tumors. The improved activity was attributed to the effect of myristoyl on the cell membrane. Flow cytometry and confocal laser scanning microscopy results showed that N-myristoylation significantly increased the membrane affinity toward breast cancer cells and also effectively mediated cellular entry. Despite increasing cytotoxicity against HEK293 and NIH3T3 cells and erythrocytes associated with its anticancer activity, myristoyl-CM4 maintained a certain selectivity toward breast cancer cells. Accordingly, the membrane affinity toward breast cancer cells was two to threefold higher than that of normal cells. Glycosylation analysis showed that sialic acid-containing oligosaccharides (including O-mucin and gangliosides) were important targets for myristoyl-CM4 binding to breast cancer cells. After internalization, co-localization analysis revealed that myristoyl-CM4 targeted mitochondria and induced mitochondrial dysfunction, including alterations in mitochondrial transmembrane potential, reactive oxygen species (ROS) generation and cytochrome c release. Activation of caspase 9, caspase 3 and cleavage of PARP were observed in MX-1, MCF-7, and MDA-MB-231 cells after myristoyl-CM4 treatment. The current work indicates that increasing hydrophobicity by myristoylation to modulate peptide-membrane interactions and then target mitochondria is a good strategy to develop AMPs as anticancer agents in the future

    Evolution mechanism of microstructure and microhardness of Ti–6Al–4V alloy during ultrasonic elliptical vibration assisted ultra-precise cutting

    Get PDF
    The ultra-precision Ti–6Al–4V alloy parts are growing used in medical and aerospace industries, and which always work in the extreme working conditions such as high temperature, high pressure, and variable load. Thus, the requirements for machining accuracy and surface quality of parts are getting higher and higher. The ultrasonic elliptical vibration assisted cutting (UEVC) technology has been proved to be an effective method for the ultra-precision machining of Ti–6Al–4V alloy. However, in the UEVC process, the evolution mechanism of microstructure and microhardness, which directly affect the service performance and life, is unrevealed. In this paper, the comprehensive investigations of microstructural plastic deformation, grain refinement, phase transformation and microhardness of machined surface layer under conventional cutting (CC) and UEVC processes are carried out. The experimental results indicated that, due to the effects of UEVC technology, the plastic deformation area show obvious compression deformation, the depth of plastic deformation is less than 10 μm, there is no obvious phase transformation on the machined surface layer material, and the hardening rate of machined surface is more than 20%. These findings show the UEVC technology has a unique influence on the microstructure and microhardness of Ti–6Al–4V alloy, which have important implications for the cutting parameter design of ultra-precision Ti–6Al–4V alloy parts

    Pervasive hybridization during evolutionary radiation of Rhododendron subgenus Hymenanthes in mountains of southwest China

    Get PDF
    Radiations are especially important for generating species biodiversity in mountainous ecosystems. The contribution of hybridization to such radiations has rarely been examined. Here, we use extensive genomic data to test whether hybridization was involved in evolutionary radiation within Rhododendron subgenus Hymenanthes, whose members show strong geographic isolation in the mountains of southwest China. We sequenced genomes for 143 species of this subgenus and 93 species of four other subgenera, and found that Hymenanthes was monophyletic and radiated during the late Oligocene to middle Miocene. Widespread hybridization events were inferred within and between the identified clades and subclades. This suggests that hybridization occurred both early and late during diversification of subgenus Hymenanthes, although the extent to which hybridization, speciation through mixing-isolation-mixing or hybrid speciation, accelerated the diversification needs further exploration. Cycles of isolation and contact in such and other montane ecosystems may have together promoted species radiation through hybridization between diverging populations and species. Similar radiation processes may apply to other montane floras in this region and elsewhere
    • …
    corecore