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As the penetration rate of renewable energy in modern power grids continues to
increase, the assessment of renewable energy absorption capacity plays an
increasingly important role in the planning and operation of power and
energy systems. However, traditional methods for assessing renewable energy
absorption capacity rely on complex mathematical modeling, resulting in low
assessment efficiency. Assessment in a single scenario determined by the source-
load curve is difficult because it fails to reflect the random fluctuation
characteristics of the source-load, resulting in inaccurate assessment results.
To address and solve the above challenges, this paper proposes a multi-scenario
renewable energy absorption capacity assessment method based on an
attention-enhanced time convolutional network (ATCN). First, a source-load
scene set is generated based on a generative adversarial network (GAN) to
accurately characterize the uncertainty on both sides of the source and load.
Then, the dependence of historical time series information inmultiple scenarios is
fully mined using the attention mechanism and temporal convolution network
(TCN). Finally, simulation and experimental verification are carried out using a
provincial power grid located in southwest China. The results show that the
method proposed in this article has higher evaluation accuracy and speed than
the traditional model.
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1 Introduction

Mitigating global warming, preventing climate damage, and achieving net-zero
emissions of greenhouse gases have become a global consensus. As an important way
to solve the global energy and environmental crisis, renewable energy power generation has
become a hot issue of concern for countries worldwide. Many countries are vigorously
developing renewable energy sources. As of the end of 2022, global renewable energy
installed capacity reached 3,372 GW, accounting for 83% of newly installed capacity with a
growth rate of 9.6%. The rapid development of a high proportion of renewable energy has
gradually transformed the power system into a new power system dominated by renewable
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energy. However, the intermittency, volatility, and uncertainty of
renewable energy output also pose serious challenges to power
system planning and operation. On the one hand, insufficient
long-distance transmission capacity and limited energy storage
capacity prevent the high proportion of renewable energy from
being fully absorbed by the power system, which will cause grid
security problems such as overloading of transmission lines,
unstable static voltage, and increased voltage deviation. In order
to reduce grid security risks, renewable energy power curtailment
often occurs. On the other hand, if the renewable energy
accommodation capacity of the main grid is not considered, the
integration of distributed renewable energy that exceeds the
penetration limit will inevitably lead to insufficient peak shaving
capacity of the main grid or transmission congestion, which will
further aggravate the phenomenon of power abandonment in
centralized renewable energy stations (Cui et al., 2022).
Therefore, an accurate assessment of renewable energy
absorption capacity is conducive to medium- and long-term
planning of the power system and adjustments to the power
system dispatch plan so as to improve the renewable energy
absorption level of the new power system.

Specifically, the current research methods on renewable energy
absorption capacity assessment are mainly divided into two
categories: model-based methods and machine learning-based
methods. The model-based method is mainly the typical day
method and time series production simulation method. The
typical day method only considers renewable energy absorption
in typical or extreme scenarios. The calculation time is fast, but the
calculation results are too conservative to accurately describe the
random fluctuation characteristics on both sides of the source-load.
Zhou et al. (2022) and Yan et al. (2022) put forward a renewable
energy absorption capacity evaluation model and a power grid
aggregation model based on time series production simulation.
Taking the annual maximum capacity of renewable energy as the
goal, the quantitative analysis of renewable energy absorption
capacity can be realized. Su et al. (2021) adopted the method of
zoning the power grid, divided the power grid according to the
congestion of renewable energy transmission, and aggregated the
load model, tie line model, and power supply model in each zone so
as to evaluate the renewable energy consumption capacity of the
entire power grid. Suo et al. (2022) proposed a time series
production simulation method for multi-energy power systems,
considering section constraints based on the equivalent energy
function method, and the calculation results are closer to the true
values of system operation. Li et al. (2019) proposed a renewable
energy absorption capacity calculation model that considers the
utilization level of inter-provincial tie lines, making full use of inter-
provincial and inter-regional tie lines to effectively improve the level
of renewable energy utilization across provinces and regions. Li et al.
(2023) proposed a multi-objective probabilistic optimal power flow
(MOPOPF) model, which aims to absorb renewable energy by
minimizing its curtailment while supporting security and
economic objectives. Ma et al. (2022) proposed a medium- and
long-term optimization model considering cross-regional power
trading and renewable energy absorption interval, and the
penalty term of renewable energy absorption interval is added to
the objective function. Yu et al. (2023) proposed a renewable energy
absorption capacity assessment method that considers peak

regulation and frequency response requirements. The original
complex peak regulation mechanism and frequency response are
equivalent to several mixed integer linear equations to reduce the
computational complexity. Li et al. (2021) established a functional
analysis model for wind power absorption capacity assessment,
taking the singular parameters of wind power as independent
variables, which effectively simplifies the calculation process of
wind power absorption capacity assessment and helps dispatchers
make reasonable decisions. Khalkho et al. (2022) developed a
general model to represent solar radiation based on Weibull
distribution and used smart grid discrete production simulation
(SGDPS) to evaluate the uncertainty of solar power generation. The
above model-based method carries out simulation calculations for
each time period; the solution is accurate, and the calculation results
are relatively reliable. However, the disadvantages are complex
modeling, a large amount of calculation, and limited applicable
scenarios (Li et al., 2018). The uncertainty on both sides of the source
and load leads to the complexity and diversity of power system
operation scenarios (Wang et al., 2023). On the source side, large-
scale access to renewable energy with strong randomness makes the
operation of power systems significantly uncertain.

On the load side, with the extensive access to new loads such as
electric vehicles, microgrids, and energy storage, the interaction
between supply and demand is becoming increasingly frequent, and
the load composition is becoming increasingly complex, showing
the characteristics of initiative and complexity, bringing multi-
source uncertainty to the operation of the power system (Wu
et al., 2020). It is difficult to truly reflect the random fluctuation
characteristics of the source and load when evaluating renewable
energy absorption capacity under a single scenario determined by
the source-load curve. Second, the model-based method is used to
evaluate a large number of renewable energy absorption scenarios,
which will consume a lot of computing time.

With the rapid development of artificial intelligence technology, the
renewable energy absorption capacity assessment method based on
machine learning provides a new way to improve the renewable energy
absorption level of new power systems. The key problem solved by
machine learning is to automatically extract complex and abstract
feature information from simple original features. It also has
powerful nonlinear expression and model recognition capabilities.
Chen et al. (2018) proposed using generative adversarial network
(GAN) to learn the time-space correlation of renewable energy
output and used the Wasserstein distance as a discriminator loss
function to improve network training quality. Generative adversarial
networks automatically learn the potential distribution patterns of data
samples through an end-to-end working method, thereby generating
data samples that are consistent with the distribution patterns of real
samples. Therefore, it provides an effective solution for the complex
modeling of uncertain scenes with source-load. The evaluation of
renewable energy absorption capacity based on machine learning
can be seen as constructing a nonlinear mapping relationship
between key variables of grid operation and the actual power
generation of renewable energy. Using the nonlinear mapping
relationship learned by the machine learning model, renewable
energy absorption capabilities can be quickly evaluated under
different operating scenarios. Lahouar and Slama (2015) proposed a
short-term prediction model based on random forest, which is mainly
applied to short-term load prediction. The model shows high accuracy
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and effectiveness on typical days such as four seasons, weekends, and
holidays. However, the use of multiple decision trees lead to a high
computational complexity of random forest, which often faces the
problem of overfitting when there is large noise in the data. Jia et al.
(2012), Liu et al. (2014), Li et al. (2016), and Varganova et al. (2022)
used principal component analysis to screen and reduce the
dimensionality of multivariate time series and then proposed a
renewable energy absorption capacity assessment model based on
long short-term memory (LSTM), establishing the key influencing
factors of renewable energy absorption and the actual absorption of
renewable energy. The dynamic correlation between them can
accurately assess the renewable energy absorption capacity under
future scenarios (Zhang et al., 2017). However, recurrent neural
networks such as LSTM need to wait for the forward pass of the
previous time step to complete before proceeding to the forward pass of
the next time step, which has the problem of slow training. The gradient
backpropagation process will accumulate along the time dimension,
and there is a gradient diffusion problem (Chen et al., 2017). Second,
due to the lack of convolution, the feature extraction capability of LSTM
and other recurrent neural networks for long time series needs to be
improved. At the same time, it is difficult to give more attention to the
key feature information that affects the prediction results. In recent
years, the time convolutional network (TCN) model has been widely
used in power grid business scenarios such as load forecasting (Wang
et al., 2020), renewable energy forecasting (Zhang et al., 2023), and
transient voltage stability assessment (Chen and Xie, 2022), but it is
relatively rarely used in the task of renewable energy absorption
capability assessment. Because of the integration of parallel feature
processing in the CNN and time domain modeling capability of RNN,
TCN has advantages in extracting long-term time series features (Song
et al., 2020).

In view of the above research status, we propose a multi-scenario
renewable energy absorption capacity evaluation method based on
an attention-enhanced time convolutional network (ATCN). The
main contributions of our work are threefold, as discussed below.

(1) Generative adversarial networks are used to generate source-
load scenario sets for multi-scenario renewable energy
absorption capacity assessment, which avoids the problem
that a single scenario assessment cannot truly reflect various
uncertain factors in actual operation.

(2) The long-term dependence of renewable energy absorption
historical data is more efficiently captured through the
temporal convolution network and attention mechanism,
and the overall evaluation accuracy of the model is improved.

(3) The temporal convolutional network does not use cyclic
connections and can input time series data in parallel so
that it can achieve faster model training speed and has more
advantages in long-term series training.

The remainder of this paper is organized as follows: Section 2
introduces the mechanism model of renewable energy absorption
capacity. Section 3 introduces the scenario generation method for
renewable energy absorption capacity assessment. Section 4
introduces the attention-enhanced time convolutional network.
In Section 5, a comprehensive numerical study is performed, and
the superiority of the proposed method is demonstrated. Finally, a
conclusion is drawn in Section 6.

2 Mechanism model of renewable
energy absorption capacity

Renewable energy absorption capacity is affected by the
following factors: power supply structure of the power grid, grid
topology, load demand, delivery market, and system peak shaving.

FIGURE 1
Schematic diagram of renewable energy absorption capacity.

FIGURE 2
Schematic diagram of the multi-scenario renewable energy
absorption capacity evaluation model.

Frontiers in Energy Research frontiersin.org03

Wu et al. 10.3389/fenrg.2024.1347553

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1347553


The mechanism model of renewable energy absorption capacity is
shown in Figure 1. The difference between load and external power
and the minimum technical output of conventional units is the
theoretical maximum absorption capacity of renewable energy.
When the output of renewable energy is less than the maximum
absorption capacity of renewable energy, the renewable energy
power generation can be fully absorbed. When the output of
renewable energy is greater than the maximum absorption
capacity of renewable energy, the excess power cannot be
absorbed by the system, resulting in the phenomenon of
renewable energy abandonment.

From Figure 1, we can intuitively analyze the main factors that
affect the absorption capacity of renewable energy, including
electricity load, external power, system backup, the minimum
technical output of conventional units, and the output level of
renewable energy. In order to explore the complex temporal
dependencies between renewable energy absorption capacity and
its main influencing factors, a data-driven approach can be used to
learn historical renewable energy absorption data.

The overall framework of the multi-scenario renewable energy
absorption capacity evaluationmodel is shown in Figure 2. According
to the input historical load data and historical renewable energy data,
the scene is generated using the Wasserstein generative adversarial
network–gradient penalty (WGAN-GP) algorithm, and the scene is
reduced using the K-medoids algorithm so that the wind power,
photovoltaic, and load scenes that conform to the real distribution of
historical data are obtained, respectively. The generated source-load
scene set is divided into datasets, and the attention-enhancing time
convolution network is trained based on massive historical data from
multiple scenes. The trained multi-scenario renewable energy
absorption capacity evaluation model can quickly and accurately
output the evaluation results of renewable energy absorption
capacity in a given scenario.

3 Renewable energy absorption
capacity assessment scenario
generation

A generative adversarial network is an adversarial learning
framework. Its core idea comes from the two-person zero-sum

game in game theory. It consists of a generator and a
discriminator, as shown in Figure 3. The entire game process
requires the generator and discriminator to find the Nash
equilibrium between the two through continuous learning and
optimization, thereby learning the potential distribution of real data
to simulate and generate complex laws that are difficult to describe in
the real world. It is suitable for the description of source-load
uncertainty scenarios. Compared with traditional probabilistic
modeling methods, the scene generation method based on
generative adversarial networks does not rely on statistical
assumptions about the data, avoids the process of scene sampling,
and can accurately capture the true distribution of historical data.

The input of the generator is a set of random noise data z to
represent the probability distribution of Pz, and the output G(z) is
the generated data sample. The input of the discriminator is
historical scene data x and data G(z) generated by the generator,
and the output is a probability value to determine whether the data
comes from real data samples. The training of a generative
adversarial network can be regarded as a minimax game model,
which is defined as follows:

min
G

max
D

V D,G( ) � Ex~Pr logD x( )[ ] − Ez~Pz log 1 −D G z( )( )( )[ ],
(1)

where E(·) represents the expected value, D(x) represents the
probability that the real data are judged to be true in the
discriminator, and D(G(z)) represents the probability that the
input data follow the historical data distribution Pr.

Based on the original generative adversarial network, WGAN-
GP adopts the observable Wasserstein distance as the training target
of the model and introduces the gradient penalty term, which is
conducive to measuring the distribution difference of different data
and can effectively solve problems such as gradient explosion,
training instability, and convergence difficulties in the training
process of the traditional generative adversarial network.

Wasserstein distance is defined as

W pr, pg( ) � 1
K

sup
f‖ ‖L ≤K

Ex~pr f x( )[ ] − Ex~pg f x( )[ ], (2)

where W(pr, pg) represents the Wasserstein distance between the
distribution of real and generated data, K represents the Lipschitz

FIGURE 3
Structural diagram of the generative adversarial network.
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constant of f(x), ‖f‖L represents the function f(x) satisfying
A-Lipschitz continuity, L represents the Lipschitz, and sup
represents the least upper bound.

The gradient penalty term is defined as

GP � λEx~Px̂ ∇D x( )‖ ‖p − 1[ ]2, (3)

where λ represents the penalty coefficient, Px̂ represents the random
interpolation sampling between the generated and real samples, and
∇D(x) represents the gradient of the discriminator.

The objective function of WGAN-GP training is defined
as follows:

min
G

max
D

V D,G( ) � Ex~Pr D x( )[ ] − Ez~Pz G z( )[ ] + GP. (4)

After the scene generation based on WGAN-GP, it is necessary
to reduce the massive scenes using the K-medoids algorithm to get
the typical source-load scene set (Yu et al., 2018). Compared with the
traditional K-means clustering algorithm, the K-medoids algorithm
chooses the object closest to the cluster mean as the cluster center,
which reduces the influence of abnormal data on the clustering effect
and is more robust to noise and outliers. Therefore, using the
K-medoids algorithm, we select the source-load scene with
obvious characteristics and high probability from the original
source-load scene. The K-medoids algorithm is mainly divided
into three steps. First, the number of clustering centers in the
k-medoids algorithm is preset, and the optimized clustering
center is obtained in the clustering process. Then, according to
the principle of being closest to the cluster center, the remaining
points are assigned to the class represented by the current best
cluster center. Finally, when all the clustering centers no longer
change, it means that the scene reduction is completed.

4 Attention-enhanced time
convolutional network

4.1 Attention mechanism

In reality, time series information usually contains a lot of
redundant information. If the redundant information is treated
as important information, it will interfere with the performance
of the model to extract information. The introduction of the
attention mechanism in the first layer of each residual module of
the TCN is helpful to improve the model’s focus on key information
in data features and reduce the risk of overfitting.

In essence, the attention mechanism is a method of weight
allocation of input features. By calculating the weight coefficient of
input features on output results, features with a high weight
coefficient are given more attention so as to highlight the
influence of key features and improve the accuracy of the
prediction model. For an input sequence x1, x2, . . . , xT of length
T, the attention weight βti of the hidden state of the historical input
to the current input state is calculated using the following formula:

βti �
exp sti( )∑T

i�1
exp sti( )

, (5)

sti � v tanh Wht−1 + Uht + b( ), (6)

where sti represents the energy value of the hidden layer state hi at
the time t, v represents the input value, W and U are the weight
coefficient matrices, and b is an offset item.

By multiplying and summing the hidden layer state of the
history node of the input sequence, the feature vector is
obtained, which is expressed as follows:

Ct � ∑T
i�1
βtiht, (7)

where Ct represents the calculated eigenvector of the input sequence
and βti represents the attention weight of the hidden state
corresponding to the history input when transitioning to the
current input state.

The state value of the last node is output, which is expressed
as follows:

Ht � f Ct,Ht−1, yt−1( ), (8)
whereHt represents the status value of the last output node and yt−1
represents the output at the time t-1.

4.2 Temporal convolutional network

A TCN is a neural network model that integrates dilated causal
convolution (DCC) and residual connection (RC). Its network
architecture is shown in Figure 4, which is stacked by an input
layer, multiple residual blocks, and an output layer.

4.2.1 Dilated causal convolution
Causal convolution can effectively avoid future information

leakage problems caused by convolution operations in traditional
convolutional neural networks, but it is difficult to capture the
characteristics of long-term historical information. On the basis
of causal convolution, dilated causal convolution can obtain a larger
receptive field by increasing the convolution kernel size K and
expansion coefficient d. It is more suitable for processing

FIGURE 4
Structural diagram of the temporal convolutional network.

Frontiers in Energy Research frontiersin.org05

Wu et al. 10.3389/fenrg.2024.1347553

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1347553


historical data with a long time span and a large amount of data. The
structure of dilated causal convolution is shown in Figure 5.

Multi-layer stacking combined with dilated causal
convolutions can enable deep learning networks to achieve very
large receptive fields with fewer network layers. In addition, since
each layer of the network uses filters of the same size, it is
conducive to parallel computing processing and improving
computing efficiency. Therefore, in view of the characteristics of
historical renewable energy absorption data with a large data scale
and a long time span, dilated causal convolution and residual
modules are used to construct a TCN to capture the long-term
dependence between renewable energy absorption capacity and its
main influencing factors in parallel. It can effectively improve the
efficiency of model evaluation. The expression of dilated causal
convolution is

F T( ) � ∑K−1
n�0

f i( )XT−di, (9)

where d represents the expansion coefficient, K represents the size of
the convolution kernel, f(i) represents the ith piece of data in the
convolution kernel, and T − di indicates that the convolution
operation is performed only on data from time T past time di.

4.2.2 Residual module
With the increase in the depth of the TCN, its ability to mine

complex correlation features between time series information is
enhanced, but it also brings about gradient explosion, gradient
disappearance, and other problems. In order to solve the
degradation problem of deep learning networks, the residual
module is introduced for error correction, which is defined
as follows:

x′ � Activation x + R x( )( ), (10)
where x represents the input sequence of the residual module, R(x)
represents the residual term, and Activation(·) represents the
activation function.

Each residual module is composed of two nonlinear, dilated
causal convolution layers. After each dilated causal convolution
layer, a batch standardization layer is added so that the input of each
layer network can be normalized. After the standardization layer, the
ReLU activation function is used to improve the model’s ability to fit
nonlinear data, and Dropout is introduced to mitigate the risk of
overfitting the model.

5 Numerical study

5.1 Experiment data description

In order to verify the feasibility and superiority of the proposed
attention-enhanced time convolutional network in renewable energy
absorption assessment, this paper carries out a case simulation and
analysis using the real SCADA data of a provincial power grid in
southwest China. The complete dataset contains historical data on the
province’s renewable energy absorption from 2018 to 2022, and the
data sampling frequency is every 15 min. Daily data with renewable
energy powermissing values or outliers were screened and eliminated,
resulting in a total of 143,191 valid datasets. The example dataset is
divided into a training set, verification set, and test set in the ratio of 6:
2:2. The zero-mean normalization method is adopted for data
standardization preprocessing, and its conversion function is
as follows:

x* � x − μ

σ
, (11)

where μ represents the mean of all sample sequences and σ

represents the standard deviation of all sample sequences.

5.2 Evaluation indicators

In order to verify the accuracy of the proposed method to
evaluate the renewable energy absorption capacity, this paper

FIGURE 5
Structural diagram of dilated causal convolution.
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uses the mean absolute percentage error eMAPE and root mean
square error eRMSE, which are widely used in statistics as error
evaluation indicators. The smaller the value of the above evaluation
index, the higher the evaluation accuracy. In addition, using the
determination coefficient R2 to evaluate the effectiveness of the
model, the larger the value, the more significant the fitting effect of
the evaluation model to the data. The specific calculation formulas
for different performance indicators are as follows:

eMAPE � 100%
N

∑N
t�1

yt − ŷt

yt

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣, (12)

eRMSE �


1
N

∑N
t�1

yt − ŷt( )2,
√√

(13)

R2 � 1 −
∑N
t�1

yt − ŷt( )2
∑N
t�1

yt − �y( )2 , (14)

where yt and ŷt, respectively, represent the predicted and real values
of the absorption capacity of renewable energy under the t time
section, �y represents the average consumption capacity of renewable
energy, and N represents the number of samples.

5.3 Model parameter setting

The proposed ATCN model is verified on a PC platform
featuring an Intel Core i7-11700F 2.5 GHz CPU, 16 GB RAM,
and GTX 1660 SUPER GPU, and the operation environment is
Torch 1.8.0 based on Python. The ATCN model parameters are
shown in Table 1.

5.4 Experimental results and analysis

5.4.1 Scene generation results
Using historical load data and historical renewable energy data,

the scene is generated through the use WGAN-GP and reduced
using the K-medoids algorithm. The source-load scene generation

based on WGAN-GP has been carried out for 250 iterations. With
the continuous updating of the data, the Wasserstein distance
decreases and finally fluctuates at approximately 0.03, as shown
in Figure 6. WGAN-GP uses the Wasserstein distance as the loss
function, and there is always gradient guidance, which can ensure
that the generated distribution is close to the real data distribution.
By increasing the gradient penalty term, the gradient distribution is
more uniform, and the training process is more stable.

The load, wind power, and photovoltaic scenarios conforming to
the true distribution of historical data are obtained, respectively, as
shown in Figure 7.

The probability of each typical scenario in the source-load scenario
set is shown in Table 2. The generated source-load scenario set can
effectively describe the random fluctuation characteristics on both sides
of the source and load, provide scenario support for the evaluation of
renewable energy absorption capacity, and reflect the influence of
various uncertain factors on renewable energy absorption in the
actual operation of power systems. The time convolution network of
the multi-scenario renewable energy absorption capacity evaluation
model has the characteristics of a parallel input of time series data. In the
training process of the renewable energy absorption capacity evaluation
model, the long-term dependence between renewable energy
absorption capacity and its main influencing factors can be captured
in parallel by inputting each typical scenario in the source-load scenario
set. Finally, the output results are weighted and summed according to
the probability of typical scenarios, which realizes an accurate capture of
the uncertain characteristics on both sides of the source and load
considering multiple scenarios.

5.4.2 Comparison of evaluation indexes in
different seasons

In order to verify the superiority of the proposed evaluationmethod
of renewable energy absorption capacity, this paper selects the typical
daily method and time series production simulation based on the
model, the long short-term memory neural network, and the random
forest based on machine learning as the benchmark prediction
methods. The accuracy of renewable energy consumption capacity

TABLE 1 ATCN model parameter.

Parameter Value

Sequence input length 96

Time window length 12

Convolution kernel size 3

Coefficient of expansion 4

Activation function ReLU

Dropout rate 0.3

Learning rate 0.003

Optimizer Adam

Learning decay rate 0.15

Batch size 128

FIGURE 6
Change in the Wasserstein distance.
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evaluation is compared and analyzed between theATCNmodel and the
abovemethods. Table 3 gives the average performance evaluation index
results of different methods in all scenarios in four seasons in detail.
From the comparative analysis in Table 3, it can be seen that the ATCN
model has achieved the best evaluation accuracy in three evaluation
indexes: MAPE, RMSE, and R2. That is, compared with all benchmark
evaluationmethods, the ATCNmodel has different degrees of accuracy

improvement in three different performance evaluation indexes.
Compared with the model-based time series production simulation,
the proposed method in this paper has a decrease of 3.11% inMAPE, a
relative decrease of 51.58% in RMSE, and an increase of 0.59% in R2.
Compared with the long short-term memory neural network based on
machine learning, the proposed method in this paper has a decrease of
6.12% inMAPE, a relative decrease of 54.80% in RMSE, and an increase
of 0.71% in R2. The typical day method only considers the operation of
the system in typical or extreme scenarios and cannot accurately
characterize the time series fluctuation characteristics on both sides
of the source and load of the system. The time series production
simulation method relies on complex mathematical modeling and time
series deduction and simplifies the model in the modeling process.
Therefore, it is difficult to understand the real operation of the system.
The LSTM method cannot extract the feature information of different
time scales by stacking multiple convolution layers, and it is difficult to
effectively capture the local dependencies in sequence data. The random
forest method will have overfitting problems when modeling datasets
with specific noise, and it is difficult to make predictions beyond the
data range of the training set, so it will not perform well when the scene
changes greatly. The attention mechanism and time convolution
network of the ATCN model can extract features of different scales
from the historical data of massive renewable energy absorption in
different scenarios by stacking convolution layers and increasing the
receptive field of the convolution kernel, effectively capture the long-
term dependence between sequence data, and fully explore the implicit
correlation between key variables of power grid operation and the actual
absorption of renewable energy.

5.4.3 Comparison of the results of 1 week selected
in different seasons

In order to verify the evaluation effect of the model proposed in
this paper on the absorption capacity of renewable energy in
different seasons, 1 week in each of the four seasons is selected
for comparative analysis. The spring period is from 21 March to
27 March 2021. The summer period is from 21 June to 27 June 2021.
The autumn period is from 21 September to 27 September 2021. The
winter period is from 21 December to 27 December 2021. The
comparison of the evaluation results of different methods is shown
in Figure 8.

FIGURE 7
Scene generation results: (A) Load; (B) Wind power; (C)
Photovoltaic.

TABLE 2 Results of scene reduction.

Scene Scene probability

1 0.103

2 0.123

3 0.089

4 0.112

5 0.098

6 0.093

7 0.105

8 0.084

9 0.102

10 0.091
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It can be seen from Figure 8 that the fluctuation range of renewable
energy absorption capacity in spring is larger, while the fluctuation
range of renewable energy absorption capacity in autumn is smaller.
Under different seasonal conditions, the model proposed in this paper
has the smallest error and the highest evaluation accuracy in evaluating
renewable energy absorption capacity, showing good robustness and
adaptability. This is because the ATCN model proposed in this paper
can effectively learn the random fluctuation characteristics of both sides
of the source and the load after training based on the source-load
scenario set and achieve accurate capture of the fluctuation
characteristics of renewable energy absorption capacity.

5.4.4 Comparison of the results of different
hyperparameters

In order to further verify the effectiveness of the model, we
consider changing the network structure hyperparameters of the
model and verifying the influence of different hyperparameters on
the model. Four kinds of hyperparameters that affect the evaluation
accuracy of renewable energy absorption capacity are considered:
sequence input length, time window length, convolution kernel size,
and expansion coefficient. The experimental results are shown in
Table 4. During the experiment, except for the corresponding
hyperparameters, other hyperparameters remain unchanged, and
the experimental results are averaged 10 times.

With the gradual increase in the sequence input length, time
window length, and expansion coefficient, the accuracy of the model
shows an increasing trend first and then decreasing. In a certain range,
with an increase in the sequence input length or time window length,
the model can make full use of more input data, and the increase in
extracted features is beneficial to improving the performance of the
model. However, when the length exceeds a certain range, the model
cannot fully capture the long-term time dependence of time series,
which leads to the gradual decline ofmodel’s performance. In a certain

range, the increase in the expansion coefficient will lead to the
enlargement of the receptive field, which will help the network
capture the dependence of longer time series. However, with the
increase in the expansion coefficient, the number of network layers
gradually deepens, and the amount and complexity of calculations
increase, which makes the model more difficult to train, so the
accuracy of the model decreases. The performance of the model
decreases with the increase in the convolution kernel size, which is due
to the loss of too much detailed information transmitted to the high-
level convolution kernel when using a large-size convolution kernel.
Finally, when the sequence input length is 96, the time window length
is 12, the convolution kernel size is 3, and the expansion coefficient is
4, the ATCN model obtains the best evaluation effect.

5.4.5 Comparison of the calculation efficiency of
different methods

Table 5 shows the comparison of the average training time and
average evaluation time in the source-load scenario set between the
renewable energy absorption capacity evaluation method proposed
in this article and other methods.

As can be seen from the table, the method proposed in this paper
avoids the complex mathematical modeling and model solving of the
model-driven method and has fast solving speed and high prediction
accuracy. By avoiding the use of circular connections and inputting
time series data in parallel for training, the training time and
evaluation time are significantly shortened. The typical day
method takes the absorption of renewable energy in typical scenes
as a reference and does not need complicated training. It only needs to
analyze and calculate the data of typical scenes in the source-load
scene set, which is fast in calculation time. The time series production
simulationmethod needs to comprehensively consider the constraints
of various types of units and large-scale power grids to realize time-by-
time simulation of power grid dispatching operation conditions.

TABLE 3 Accuracy of different assessment methods.

Season Index Typical day Production simulation LSTM RF ATCN

Spring eMAPE 64.52% 3.21% 6.62% 35.04% 1.92%

eRMSE 1,892.74 143.83 172.43 1,006.71 74.67

R2 53.15 99.25 99.04 71.04 99.83

Summer eMAPE 77.58% 5.32% 6.29% 28.08% 1.86%

eRMSE 1,857.63 163.62 170.67 819.04 76.88

R2 51.26 99.21 99.11 75.94 99.79

Autumn eMAPE 89.21% 6.13% 14.11% 91.04% 3.36%

eRMSE 2,354.36 168.23 175.41 864.67 61.08

R2 47.23 99.24 97.36% 53.19 99.67

Winter eMAPE 65.41% 3.35% 8.29% 37.33% 2.02

eRMSE 1,733.58 145.26 187.79 756.52 89.63

R2 53.23 99.24 98.58 76.88 99.67

Average eMAPE 70.43% 5.35% 8.36% 45.20% 2.24%

eRMSE 1,975.32 165.25 177.05 909.66 80.02

R2 54.65 99.23 99.12 76.74 99.82
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Complex mechanismmodeling leads to the time-consuming problem
of finding the optimal solution in multiple scenarios. Because of the
internal structural characteristics of LSTM, its training process is
processed sequentially with the passage of time, and it is impossible to
realize the parallel processing of time series data, which leads to the
time-consuming training and evaluation in the source-load scene set.
Because each decision tree can be trained independently, the random
forest can be processed in parallel, but with the increase in the number
of decision trees, its computational complexity is greatly improved,
especially when facing multi-scene source and load data. Therefore, it

FIGURE 8
Comparison of evaluation results of renewable energy absorption capacity: (A) Spring; (B) Summer; (C) Autumn; (D) Winter.

TABLE 4 ATCN hyperparametric analysis.

Hyperparameter Value eMAPE (%) eRMSE R2

Sequence input length 24 4.38 153.29 99.14

48 3.26 145.76 99.24

96 2.24 80.02 99.82

192 2.86 102.98 99.46

Time window length 3 5.39 166.34 99.21

6 3.37 146.31 99.24

12 2.24 80.02 99.82

24 5.28 161.33 99.22

Convolution kernel size 3 2.24 80.02 99.82

4 2.73 99.78 99.49

5 2.97 101.23 99.47

Coefficient of expansion 2 3.57 149.79 99.24

4 2.24 80.02 99.82

8 3.21 143.67 99.27

16 5.31 163.24 99.21

TABLE 5 Calculation time of different assessment methods.

Method Training
time (min)

Assessment
time (min)

Typical day 5.8

Production
simulation

627.6

LSTM 87.3 3.8

RF 134.2 4.3

ATCN 27.7 1.2
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is necessary to train multiple decision trees at the same time, which
further increases the training time and evaluation time of the random
forest algorithm.

6 Conclusion

In this paper, aiming at problems such as the low evaluation
efficiency of the traditional renewable energy absorption capacity
evaluation method and the inaccurate evaluation results caused by
the evaluation in a single scene determined by the source-load curve,
a multi-scenario renewable energy absorption capacity evaluation
method based on an attention-enhanced time convolution network
is proposed. The simulation analysis is carried out using the real
renewable energy historical absorption data of a provincial power
grid in southwest China. The main results are as follows:

(1) The trained generator network can fully mine the implicit
association of massive historical data, generate the source-
load scene set in line with the actual operation law of the
system, and provide scene support for the evaluation of
renewable energy absorption capacity.

(2) The attention mechanism and time convolution network help
in fully mining the long-term dependence of historical time
series information in multiple scenarios so as to effectively
improve the evaluation accuracy of the model. In addition, the
training speed of the model is effectively improved through
parallel training.

(3) The ATCN model is trained based on massive historical data
of multiple scenarios, which can fully learn the random
fluctuation characteristics of both sides of the source-load
under different scenarios and realize an accurate capture of
the fluctuation characteristics of the absorption capacity of
renewable energy so as to effectively improve the robustness
and adaptability of the model.

It is worth noting that the training of the neural network is
highly dependent on the quality of the data. The follow-up work will
integrate a data-driven and knowledge-driven model and further
improve the performance and interpretability of renewable energy
absorption capacity evaluation by embedding prior knowledge in the
model training process.
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