324 research outputs found

    Aeroacoustic testing of the landing gear components

    Get PDF
    The sound field generated by full scale landing gear components was studied in an acoustic wind tunnel. Noise characteristics were evaluated. The noise contribution of each part was investigated by removing the gear part individually. Three design parameters were also obtained to assess the noise reduction potential. Test results indicate that the noise spectrum of the component is essentially broadband and mainly dominated by some peaks corresponding to the constant St. Sound pressure level scales with the sixth power velocity law. Noise radiation from the components has obvious directivities. The main strut is the least contributor while the bogie is the largest contributor to the total noise. It is also found that the noise level increases with the gear installation angle from 0° to 16.5° while it decreases via changing the torque link layout from the front of the main strut to its back or modifying the bogie shape by filling its holes

    Aeroacoustic noise reduction design of a landing gear structure based on wind tunnel experiment and simulation

    Get PDF
    In the process of aircraft landing, the aerodynamic noise of the landing gear constitutes an appreciable part of the airframe noise. Therefore it is important to dedicate research efforts to study of aerodynamic noise of landing gear and its structural parts. Acoustic wind tunnel test on landing gear is designed to measure aerodynamic noise of structural parts of landing gear such as pillar and torque arm. Aerodynamic noise spectrum characteristic and radiation directive characteristic of structural parts in different velocities are established. The effect of flow velocity to noise is analyzed. Two noise reduction designs are proposed in the paper. The effect of the relative position of pillar and torque arm to structural noise is considered based on simulations and testing. Simulation method to assess the noise reduction effect of torque arm shape modification is adopted. The results demonstrate that structural noise can be appreciably reduced by placing torque arm behind the pillar as well as by modifying the shape of the torque arm. In total, the study holds reference value to the ongoing research activities on aerodynamic noise of landing gear and design method for low noise operation of the gear

    Aeroacoustic noise reduction design of a landing gear structure based on wind tunnel experiment and simulation

    Get PDF
    In the process of aircraft landing, the aerodynamic noise of the landing gear constitutes an appreciable part of the airframe noise. Therefore it is important to dedicate research efforts to study of aerodynamic noise of landing gear and its structural parts. Acoustic wind tunnel test on landing gear is designed to measure aerodynamic noise of structural parts of landing gear such as pillar and torque arm. Aerodynamic noise spectrum characteristic and radiation directive characteristic of structural parts in different velocities are established. The effect of flow velocity to noise is analyzed. Two noise reduction designs are proposed in the paper. The effect of the relative position of pillar and torque arm to structural noise is considered based on simulations and testing. Simulation method to assess the noise reduction effect of torque arm shape modification is adopted. The results demonstrate that structural noise can be appreciably reduced by placing torque arm behind the pillar as well as by modifying the shape of the torque arm. In total, the study holds reference value to the ongoing research activities on aerodynamic noise of landing gear and design method for low noise operation of the gear

    The Genomes of Oryza sativa: A History of Duplications

    Get PDF
    We report improved whole-genome shotgun sequences for the genomes of indica and japonica rice, both with multimegabase contiguity, or almost 1,000-fold improvement over the drafts of 2002. Tested against a nonredundant collection of 19,079 full-length cDNAs, 97.7% of the genes are aligned, without fragmentation, to the mapped super-scaffolds of one or the other genome. We introduce a gene identification procedure for plants that does not rely on similarity to known genes to remove erroneous predictions resulting from transposable elements. Using the available EST data to adjust for residual errors in the predictions, the estimated gene count is at least 38,000–40,000. Only 2%–3% of the genes are unique to any one subspecies, comparable to the amount of sequence that might still be missing. Despite this lack of variation in gene content, there is enormous variation in the intergenic regions. At least a quarter of the two sequences could not be aligned, and where they could be aligned, single nucleotide polymorphism (SNP) rates varied from as little as 3.0 SNP/kb in the coding regions to 27.6 SNP/kb in the transposable elements. A more inclusive new approach for analyzing duplication history is introduced here. It reveals an ancient whole-genome duplication, a recent segmental duplication on Chromosomes 11 and 12, and massive ongoing individual gene duplications. We find 18 distinct pairs of duplicated segments that cover 65.7% of the genome; 17 of these pairs date back to a common time before the divergence of the grasses. More important, ongoing individual gene duplications provide a never-ending source of raw material for gene genesis and are major contributors to the differences between members of the grass family

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Enhanced acarbose production by Streptomyces M37 using a two-stage fermentation strategy.

    No full text
    In this work, we investigated the effect of pH on Streptomyces M37 growth and its acarbose biosynthesis ability. We observed that low pH was beneficial for cell growth, whereas high pH favored acarbose synthesis. Moreover, addition of glucose and maltose to the fermentation medium after 72 h of cultivation promoted acarbose production. Based on these results, a two-stage fermentation strategy was developed to improve acarbose production. Accordingly, pH was kept at 7.0 during the first 72 h and switched to 8.0 after that. At the same time, glucose and maltose were fed to increase acarbose accumulation. With this strategy, we achieved an acarbose titer of 6210 mg/L, representing an 85.7% increase over traditional batch fermentation without pH control. Finally, we determined that the increased acarbose production was related to the high activity of glutamate dehydrogenase and glucose 6-phosphate dehydrogenase

    Postulated acarbose biosynthetic pathway.

    No full text
    <p>Glucose and maltose are the carbon sources for acarbose biosynthesis.</p

    Effect of a two-stage fermentation strategy on acarbose production by <i>Streptomyces</i> M37.

    No full text
    <p>DCW (★), reducing sugars (■), and acarbose production (▲). Fermentations were carried out at 28°C and 200 rpm agitation speed. Glucose and maltose were fed at a 1:2 mass ratio and pH was adjusted with 2 M NaOH and 2 M H<sub>2</sub>SO<sub>4</sub>. Each value represents the mean of three separate determinations ± standard deviation (arrows indicate feeding times).</p
    corecore