659 research outputs found
Physiological Responses in a Variable Environment: Relationships between Metabolism, Hsp and Thermotolerance in an Intertidal-Subtidal Species
Physiological responses to temperature reflect the evolutionary adaptations of organisms to their thermal environment and the capability of animals to tolerate thermal stress. Contrary to conventional metabolism theory, increasing environmental temperatures have been shown to reduce metabolic rate in rocky–eulittoral-fringe species inhabiting highly variable environments, possibly as a strategy for energy conservation. To study the physiological adaptations of an intertidal-subtidal species to the extreme and unpredictable heat stress of the intertidal zone, oxygen consumption rate and heat shock protein expression were quantified in the sea cucumber Apostichopus japonicus. Using simulate natural temperatures, the relationship between temperature, physiological performance (oxygen consumption and heat shock proteins) and thermotolerance were assessed. Depression of oxygen consumption rate and upregulation of heat shock protein genes (hsps) occurred in sequence when ambient temperature was increased from 24 to 30°C. Large-scale mortality of the sea cucumber occurred when temperatures rose beyond 30°C, suggesting that the upregulation of heat shock proteins and mortality are closely related to the depression of aerobic metabolism, a phenomenon that is in line with the concept of oxygen- and capacity-limited thermal tolerance (OCLTT). The physiologically-related thermotolerance of this sea cucumber should be an adaptation to its local environment
Difference in Thermotolerance Between Green and Red Color Variants of the Japanese Sea Cucumber, Apostichopus japonicus Selenka: Hsp70 and Heat-Hardening Effect
We studied thermal tolerance limits, heat-hardening, and Hsp70 to elucidate the difference in thermotolerance between two color variants of the sea Cucumber Apostichopus japonicus. Green and Red variants Occupy different habitats and have different aestivation responses to high temperature in summer. In the absence of heat-hardening the variants showed no difference in the temperature at which 50% of the individuals died: Green 31.49 degrees C; Red, 31.39 degrees C. However. Green specimens acquired higher thermotolerance than Red after a prior Sublethal heat exposure. After 72 h of recovery from a heat-hardening treatment (30 degrees C for 2 h) the survival of Green variants was more than 50% and that of Red wits less than 5% when they were treated at 33 degrees C for 2 h. Levels of mRNA and protein for Hsp70 were significantly higher in Green than Red after the heat shock of 30 degrees C, and the stability of hsp70 mRNA of Green was significantly higher than that of Red. Our findings suggest that within the same species, different variants that have similar thermal limits in the absence of heat-hardening can acquire different thermotolerances after a prior sublethal heat shock. The difference in induced thermotolerance between Green and Red is closely related to the expression pattern of Hsp70, which was partly governed by the stability of hsp70 mRNA
A high-performance temperature-control scheme: growth of sea cucumber Apostichopus japonicus with different modes of diel temperature fluctuation
The effects of four modes of diel temperature-fluctuation with two designated fluctuating temperatures (15 +/- A 3A degrees C and 18 +/- A 3A degrees C) on the growth and energy budget of young sea cucumber, Apostichopus japonicus Selenka, were studied to develop a highly efficient temperature-control scheme for aquaculture of the species. Sea cucumbers with a mean wet body weight of 8.0 +/- A 1.2 g (mean +/- A SD) were allocated to each treatment randomly with five replicates. After a 38-day trial, specific growth rate (SGR) and food conversion efficiency (FCE) decreased with increasing temperature in constant-temperature treatments. Among the four modes of temperature fluctuation, SGR of sea cucumbers reared under a mode which simulated the natural fluctuation of the temperature (mode C) of seawater was significantly higher than that of sea cucumbers reared at the corresponding constant temperatures. This enhancement of growth rate by use of mode C was attributed to higher FCE and lower energy allocated to respiration and feces. In large-scale culture, a temperature-control mode designed based on mode C could enhance not only growth but also efficiency of food utilization by the young sea cucumber
Release of moth pheromone compounds from Nicotiana benthamiana upon transient expression of heterologous biosynthetic genes
Background Using genetically modified plants as natural dispensers of insect pheromones may eventually become part of a novel strategy for integrated pest management. Results In the present study, we first characterized essential functional genes for sex pheromone biosynthesis in the rice stem borer Chilo suppressalis (Walker) by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana, including two desaturase genes CsupYPAQ and CsupKPSE and a reductase gene CsupFAR2. Subsequently, we co-expressed CsupYPAQ and CsupFAR2 together with the previously characterized moth desaturase Atr increment 11 in N. benthamiana. This resulted in the production of (Z)-11-hexadecenol together with (Z)-11-hexadecenal, the major pheromone component of C. suppressalis. Both compounds were collected from the transformed N. benthamiana headspace volatiles using solid-phase microextraction. We finally added the expression of a yeast acetyltransferase gene ATF1 and could then confirm also (Z)-11-hexadecenyl acetate release from the plant. Conclusions Our results pave the way for stable transformation of plants to be used as biological pheromone sources in different pest control strategies
Release of moth pheromone compounds from Nicotiana benthamiana upon transient expression of heterologous biosynthetic genes
Background: Using genetically modified plants as natural dispensers of insect pheromones may eventually become part of a novel strategy for integrated pest management. Results: In the present study, we first characterized essential functional genes for sex pheromone biosynthesis in the rice stem borer Chilo suppressalis (Walker) by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana, including two desaturase genes CsupYPAQ and CsupKPSE and a reductase gene CsupFAR2. Subsequently, we co-expressed CsupYPAQ and CsupFAR2 together with the previously characterized moth desaturase Atr∆11 in N. benthamiana. This resulted in the production of (Z)-11-hexadecenol together with (Z)-11-hexadecenal, the major pheromone component of C. suppressalis. Both compounds were collected from the transformed N. benthamiana headspace volatiles using solid-phase microextraction. We finally added the expression of a yeast acetyltransferase gene ATF1 and could then confirm also (Z)-11-hexadecenyl acetate release from the plant. Conclusions: Our results pave the way for stable transformation of plants to be used as biological pheromone sources in different pest control strategies
Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects
<p>Abstract</p> <p>Background</p> <p>Insect odorant binding proteins (OBPs) and chemosensory proteins (CSPs) play an important role in chemical communication of insects. Gene discovery of these proteins is a time-consuming task. In recent years, expressed sequence tags (ESTs) of many insect species have accumulated, thus providing a useful resource for gene discovery.</p> <p>Results</p> <p>We have developed a computational pipeline to identify OBP and CSP genes from insect ESTs. In total, 752,841 insect ESTs were examined from 54 species covering eight Orders of Insecta. From these ESTs, 142 OBPs and 177 CSPs were identified, of which 117 OBPs and 129 CSPs are new. The complete open reading frames (ORFs) of 88 OBPs and 123 CSPs were obtained by electronic elongation. We randomly chose 26 OBPs from eight species of insects, and 21 CSPs from four species for RT-PCR validation. Twenty two OBPs and 16 CSPs were confirmed by RT-PCR, proving the efficiency and reliability of the algorithm. Together with all family members obtained from the NCBI (OBPs) or the UniProtKB (CSPs), 850 OBPs and 237 CSPs were analyzed for their structural characteristics and evolutionary relationship.</p> <p>Conclusions</p> <p>A large number of new OBPs and CSPs were found, providing the basis for deeper understanding of these proteins. In addition, the conserved motif and evolutionary analysis provide some new insights into the evolution of insect OBPs and CSPs. Motif pattern fine-tune the functions of OBPs and CSPs, leading to the minor difference in binding sex pheromone or plant volatiles in different insect Orders.</p
Perspective of monochromatic gamma-ray line detection with the High Energy cosmic-Radiation Detection (HERD) facility onboard China's Space Station
HERD is the High Energy cosmic-Radiation Detection instrument proposed to
operate onboard China's space station in the 2020s. It is designed to detect
energetic cosmic ray nuclei, leptons and photons with a high energy resolution
( for electrons and photons and for nuclei) and a large
geometry factor ( for electrons and diffuse photons and for nuclei). In this work we discuss the capability of HERD to detect
monochromatic -ray lines, based on simulations of the detector
performance. It is shown that HERD will be one of the most sensitive
instruments for monochromatic -ray searches at energies between
to a few hundred GeV. Above hundreds of GeV, Cherenkov telescopes will
be more sensitive due to their large effective area. As a specific example, we
show that a good portion of the parameter space of a supersymmetric dark matter
model can be probed with HERD.Comment: 9 pages, 7 figures, matches version published in Astropart.Phy
Brasilianoids A–F, New Meroterpenoids From the Sponge-Associated Fungus Penicillium brasilianum
3,5-Dimethylorsellinic acid (DMOA) derived meroterpenoids comprise an unique class of natural products with diverse scaffolds and with a broad spectrum of bioactivities. Bioinformatics analysis of the gene clusters in association with the qRT-PCR detection of the amplification of two key genes led to speculate that the sponge associated fungus Penicillium brasilianum WZXY-m122-9 is a potential producer of meroterpenoids. Chromatographic separation of the EtOAc extract of this fungal strain on a large-scale fermentation resulted in the isolation of six new DMOA-related meroterpenoids with trivial names of brasilianoids A–F (1-6), together with preaustinoid D and preaustinoid A2. The structures were determined by extensive analyses of spectroscopic data, including the X-ray diffraction and the ECD data for configurational assignment. Brasilianoids A and F showed an unprecedented skeleton with a γ-lactone in ring A, while brasilianoids B–C featured a 7/6/6/5/5 pentacyclic ring system finding in nature for the first time. The biosynthetic relationship among the isolated compounds was postulated. Compound 1 significantly stimulated the expression of filaggrin and caspase-14 in HaCaT cells in dose-dependent manner, while compounds 2 and 3 showed moderate inhibition against NO production in LPS-induced RAW 264.7 macrophages
The Self-organized Criticality Behaviors of Two New Parameters in SGR J1935+2154
The minimum variation timescale (MVT) and spectral lag of hundreds of X-ray
bursts (XRBs) from soft gamma-ray repeater (SGR) J1935+2154 were analyzed in
detail for the first time in our recent work, which are important probes for
studying the physical mechanism and radiation region. In this work, we
investigate their differential and cumulative distributions carefully and find
that they follow power-law models. Besides, the distributions of fluctuations
in both parameters follow the Tsallis -Gaussian distributions and the
values are consistent for different scale intervals. Therefore, these results
indicate that both parameters are scale-invariant, which provides new
parameters for the study of self-organized criticality systems. Interestingly,
we find that the values for MVT and spectral lag are similar with duration
and fluence, respectively.Comment: accepted by MNRA
Amniotic fluid-derived mesenchymal stem cells as a novel therapeutic approach in the treatment of fulminant hepatic failure in rats
As a potential alternative treatment for terminal liver diseases, amniotic fluid derived mesenchymal stem cells (AFMSCs) have many advantages over other stem cells: avoiding much ethical controversy and decrease in both quantity and differentiation potential with age. However, the therapeutic role of AFMSC for fulminant hepatic failure (FHF) has not yet been clearly elucidated. Therefore, we investigated the reparation effects of transplanted AFMSCs in rats with FHF. AFMSCs were transplanted into injured liver via the portal vein in the rat FHF model. Therapeutic effect was evaluated after cell transfusion by histologic pathology, hepatic enzyme levels and animal survival. Cryostat sections were prepared and directly assessed for green fluorescent protein (GFP) expression and localization, and in vivo differentiation of AFMSC was confirmed by double-immunostaining analyses. Our results show that AFMSCs prevented liver failure and reduced mortality in rats with FHF. These animals also exhibited improved liver function and animals survival after injection with AFMSCs using GFP, we demonstrated that the engrafted cells and their progeny incorporated into injured livers and produced albumin. We found that AFMSCs transplantation modestly promoted the repair of FHF in rats. AFMSCs implanted in the injured liver may be a novel therapeutic approach in the treatment of FHF.Key words: Amniotic fluid-derived mesenchymal stem cells, fulminant hepatic failure, cell transplantation, treatment, hepatogenic differentiation
- …