31 research outputs found

    A Study of the Effects of Tornado Translation on Wind Loading Using a Potential Flow Model

    Get PDF
    This paper investigates the effects of tornado translation on pressure and overall force experienced by an airfoil subjected to tornado loading and presents a framework to reproduce the flow conditions and effects of a moving tornado. A thin symmetrical airfoil was used to explore the effects of tornado translation on a body. A panel method was used to compute the flow around an airfoil and an idealised tornado is represented using a moving vortex via unsteady potential flow. Analysis showed that the maximum overall pressure at a point was found to increase by up to 20% when the normalised translating velocity was 10% of the tangential velocity, but increases up to 60% when the normalised translating velocity is 30% of the tangential velocity. Investigation on the impact of varying airfoil thickness (Case 2) revealed that the location of the tornado has significant effect on the overall lift force. However, the overall lift force appeared to be largely insensitive to the tornado translation velocity due gross changes in pressure on either side of the airfoil cancelling each other out. Further comparison with varying airfoil sizes and distance to tornado translating path (Case 3) showed that the relative inflow and outflow angle is the primary factor affecting the lift on the airfoil. Additionally, the maximum forces on a body subjected to a moving tornado can be predicted using uniform flow providing that the appropriate range of inflow angles are known. Based on the analysis on the database of National Oceanic and Atmospheric Administration (NOAA), the normalised translation speed of the recorded tornadoes across the EF scales, appears to vary from 0.25 to 0.37, with an average of 0.32 (∼18.8 m/s). Finally, the framework using uniform flow to reproduce the flow conditions which are comparable to those generated by a translating vortex simulator is proposed and discussed in detail

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A Parallel Strategy for High-speed Interpolation of CNC Using Data Space Constraint Method

    No full text
    A high-speed interpolation scheme using parallel computing is proposed in this paper. The interpolation method is divided into two tasks, namely, the rough task executing in PC and the fine task in the I/O card. During the interpolation procedure, the double buffers are constructed to exchange the interpolation data between the two tasks. Then, the data space constraint method is adapted to ensure the reliable and continuous data communication between the two buffers. Therefore, the proposed scheme can be realized in the common distribution of the operation systems without real-time performance. The high-speed and high-precision motion control can be achieved as well. Finally, an experiment is conducted on the self-developed CNC platform, the test results are shown to verify the proposed method

    Regional Distribution and Causes of Global Mine Tailings Dam Failures

    No full text
    Tailings ponds are one of the three major production facilities in metal mines. The volume of tailings increases year by year, but the storage capacity of existing tailings ponds is limited. Therefore, tailings dams must become more fine-grained and larger. The potential hazard they represent should not be underestimated. This paper reveals the causes and regional distribution patterns of 342 tailings dam failures globally from 1915 to 2021 through statistical analysis. It was found that tailings pond failures occur almost every year, with an average of 4.4 accidents/year (1947–2021). The frequency has been gradually increasing in recent years, and most tailings pond failures are directly related to heavy rainfall or earthquakes. The frequency of tailings pond failures was significantly higher in Asia (21.3%) and the Americas (57.9%), especially in China (n = 43) and the United States (n = 107). Causes of tailings pond failures differed among regions. Most tailings pond failures in Asia and Europe were related to hydroclimate, while those in South America were mainly triggered by earthquakes. This study will provide theoretical data for the pre-design as well as the safe and stable operation of global tailings ponds, which will help to prevent global tailings pond failures

    Regional Distribution and Causes of Global Mine Tailings Dam Failures

    No full text
    Tailings ponds are one of the three major production facilities in metal mines. The volume of tailings increases year by year, but the storage capacity of existing tailings ponds is limited. Therefore, tailings dams must become more fine-grained and larger. The potential hazard they represent should not be underestimated. This paper reveals the causes and regional distribution patterns of 342 tailings dam failures globally from 1915 to 2021 through statistical analysis. It was found that tailings pond failures occur almost every year, with an average of 4.4 accidents/year (1947–2021). The frequency has been gradually increasing in recent years, and most tailings pond failures are directly related to heavy rainfall or earthquakes. The frequency of tailings pond failures was significantly higher in Asia (21.3%) and the Americas (57.9%), especially in China (n = 43) and the United States (n = 107). Causes of tailings pond failures differed among regions. Most tailings pond failures in Asia and Europe were related to hydroclimate, while those in South America were mainly triggered by earthquakes. This study will provide theoretical data for the pre-design as well as the safe and stable operation of global tailings ponds, which will help to prevent global tailings pond failures

    Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells

    No full text
    <div><p>Both tyrosine kinase and topoisomerase II (TopII) are important anticancer targets, and their respective inhibitors are widely used in cancer therapy. However, some combinations of anticancer drugs could exhibit mutually antagonistic actions and drug resistance, which further limit their therapeutic efficacy. Here, we report that HMNE3, a novel bis-fluoroquinolone chalcone-like derivative that targets both tyrosine kinase and TopII, induces tumor cell proliferation and growth inhibition. The viabilities of 6 different cancer cell lines treated with a range of HMNE3 doses were detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cellular apoptosis was determined using Hoechst 33258 fluorescence staining and the terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay. The expression of activated Caspase-3 was examined by immunocytochemistry. The tyrosine kinase activity was measured with a human receptor tyrosine kinase (RTK) detection kit using a horseradish peroxidase (HRP)-conjugated phosphotyrosine (pY20) antibody as the substrate. The topoisomerase II activity was measured using agarose gel electrophoresis with the DNA plasmid pBR322 as the substrate. The expression levels of the P53, Bax, Bcl-2, Caspase-3, -8, -9, p-cSrc, c-Src and topoisomerase II proteins were detected by western blot analysis. The proliferation of five of the six cancer cell lines was significantly inhibited by HMNE3 at 0.312 to 10 μmol/L in a time- and dose-dependent manner. Treatment of the Capan-1 and Panc-1 cells with 1.6 to 3.2 μM HMNE3 for 48 h significantly increased the percentage of apoptotic cells (P<0.05), and this effect was accompanied by a decrease in tyrosine kinase activity. HMNE3 potentially inhibited tyrosine kinase activity <i>in vitro</i> with an IC<sub>50</sub> value of 0.64±0.34 μmol/L in Capan-1 cells and 3.1±0.86 μmol/L in Panc-1 cells. The activity of c-Src was significantly inhibited by HMNE3 in a dose- and time-dependent manner in different cellular contexts. Compared with the control group, HMNE3 induced increased expression of cellular apoptosis-related proteins. Consistent with cellular apoptosis data, a significant decrease in topoisomerase IIβ activity was noted following treatment with HMNE3 for 24 h. Our data suggest that HMNE3 induced apoptosis in Capan-1 and Panc-1 cells by inhibiting the activity of both tyrosine kinases and topoisomerase II.</p></div

    Nuclear staining of Capan-1 cells following 48 h treatment with HMNE3.

    No full text
    <p>Approximately 5×10<sup>3</sup> cells/mL were seeded on 35-mm glass slides. After treatment with HMNE3 for 48 h, the cells were washed twice with PBS and incubated with 5 μg/mL Hoechst 33258 for 10 min at 37°C in the dark. The nuclear morphology was then examined under a fluorescent microscope.</p
    corecore