451 research outputs found

    Impact of Methylglyoxal and High Glucose Co-treatment on Human Mononuclear Cells

    Get PDF
    Hyperglycemia and elevation of methylglyoxal (MG) are symptoms of diabetes mellitus (DM). In this report, we show that co-treatment of human mononuclear cells (HMNCs) with MG (5 μM) and high glucose (HG; 15 – 30 mM) induces apoptosis or necrosis. HG/MG co-treatment directly enhanced the reactive oxygen species (ROS) content in HMNCs, leading to decreased intracellular ATP levels, which control cell death via apoptosis or necrosis. Concentrations of 5 μM MG and 15 mM glucose significantly increased cytoplasmic free calcium and nitric oxide (NO) levels, loss of mitochondrial membrane potential (MMP), activation of caspases-9 and -3, and cell death. In contrast, no apoptotic biochemical changes were detected in HMNCs treated with 5 μM MG and 25 mM glucose, which appeared to undergo necrosis. Pretreatment with nitric oxide (NO) scavengers inhibited apoptotic biochemical changes induced by 5 μM MG/15 mM glucose, and increased the gene expression levels of p53 and p21 involved in apoptotic signaling. The results collectively suggest that the treatment dosage of MG and glucose determines the mode of cell death (apoptosis vs. necrosis) of HMNCs, and that both ROS and NO play important roles in MG/HG-induced apoptosis

    Antioxidant activity and growth inhibition of human colon cancer cells by crude and purified fucoidan preparations extracted from Sargassum cristaefolium

    Get PDF
    AbstractFucose-containing sulfated polysaccharides, also termed “fucoidans”, which are known to possess antioxidant, anticoagulant, anticancer, antiviral, and immunomodulating properties, are normally isolated from brown algae via various extraction techniques. In the present study, two methods (SC1 and SC2) for isolation of fucoidan from Sargassum cristaefolium were compared, with regard to the extraction yields, antioxidant activity, and inhibition of growth of human colon cancer cells exhibited by the respective extracts. SC1 and SC2 differ in the number of extraction steps and concentration of ethanol used, as well as the obtained sulfated polysaccharide extracts, namely, crude fucoidan preparation (CFP) and purified fucoidan preparation (PFP), respectively. Thin layer chromatography, Fourier transform infrared analysis, and measurements of fucose and sulfate contents revealed that the extracts were fucoidan. There was a higher extraction yield for CFP, which contained less fucose and sulfate but more uronic acid, and had weaker antioxidant activity and inhibition of growth in human colon cancer cells. In contrast, there was a lower extraction yield for PFP, which contained more fucose and sulfate but less uronic acid, and had stronger antioxidant activity and inhibition of growth in human colon cancer cells. Thus, since the difference in bioactive activities between CFP and PFP was not remarkable, the high extraction yield of SC1 might be favored as a method in industrial usage for extracting fucoidan

    Arecoline induces HA22T/VGH hepatoma cells to undergo anoikis - involvement of STAT3 and RhoA activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous study showed that, in basal cell carcinoma cells, arecoline reduces levels of the tumor cell survival factor interleukin-6 (IL-6), increases levels of tumor suppressor factor p53, and elicits cell cycle arrest, followed by apoptosis. In preliminarily studies, we observed that arecoline induces detachment of the human-derived hepatoma cell line HA22T/VGH from the extracellular matrix. In the present study, we explored the fate of the detached HA22T/VGH cells and investigated the underlying mechanism.</p> <p>Methods</p> <p>HA22T/VGH cells or primary cultured rat hepatocytes were treated with arecoline, then changes in morphology, viability, apoptosis, and the expression of surface β1-integrin, apoptosis-related proteins, and IL-6 were examined. Furthermore, activation of the signal transducer and activator of transcription 3 (STAT3) pathway and the RhoA/Rock signaling pathway, including p190RhoGAP and Src homology-2 domain-containing phosphatase SHP2, was examined.</p> <p>Results</p> <p>A low concentration of arecoline (≤ 100 μg/ml) caused cytoskeletal changes in HA22T/VGH cells, but not hepatocytes, and this was accompanied by decreased β1-integrin expression and followed by apoptosis, indicating that HA22T/VGH cells undergo anoikis after arecoline treatment. IL-6 expression and phosphorylation of STAT3, which provides protection against anoikis, were inhibited and levels of downstream signaling proteins, including Bcl-X<sub>L </sub>and Bcl-2, were decreased, while Bax expression, mitochondrial cytochrome c release, and caspase-3 activity were increased. In addition, phosphorylation/activation of p190RhoGAP, a RhoA inhibitor, and of its upstream regulator, SHP2, was inhibited by arecoline treatment, while Rho/Rock activation was increased. Addition of the RhoA inhibitor attenuated the effects of arecoline.</p> <p>Conclusions</p> <p>This study demonstrated that arecoline induces anoikis of HA22T/VGH cells involving inhibition of STAT3 and increased RhoA/Rock activation and that the STAT3 and RhoA/Rock signaling pathways are connected.</p

    ABL Genomic Editing Sufficiently Abolishes Oncogenesis of Human Chronic Myeloid Leukemia Cells In Vitro and In Vivo

    Get PDF
    Chronic myelogenous leukemia (CML) is the most common type of leukemia in adults, and more than 90% of CML patients harbor the abnormal Philadelphia chromosome (Ph) that encodes the BCR-ABL oncoprotein. Although the ABL kinase inhibitor (imatinib) has proven to be very effective in achieving high remission rates and improving prognosis, up to 33% of CML patients still cannot achieve an optimal response. Here, we used CRISPR/Cas9 to specifically target the BCR-ABL junction region in K562 cells, resulting in the inhibition of cancer cell growth and oncogenesis. Due to the variety of BCR-ABL junctions in CML patients, we utilized gene editing of the human ABL gene for clinical applications. Using the ABL gene-edited virus in K562 cells, we detected 41.2% indels in ABL sgRNA_2-infected cells. The ABL-edited cells reveled significant suppression of BCR-ABL protein expression and downstream signals, inhibiting cell growth and increasing cell apoptosis. Next, we introduced the ABL gene-edited virus into a systemic K562 leukemia xenograft mouse model, and bioluminescence imaging of the mice showed a significant reduction in the leukemia cell population in ABL-targeted mice, compared to the scramble sgRNA virus-injected mice. In CML cells from clinical samples, infection with the ABL gene-edited virus resulted in more than 30.9% indels and significant cancer cell death. Notably, no off-target effects or bone marrow cell suppression was found using the ABL gene-edited virus, ensuring both user safety and treatment efficacy. This study demonstrated the critical role of the ABL gene in maintaining CML cell survival and tumorigenicity in vitro and in vivo. ABL gene editing-based therapy might provide a potential strategy for imatinib-insensitive or resistant CML patient

    Population Physiologically Based Pharmacokinetic Modeling for the Human Lactational Transfer of PCB-153 with Consideration of Worldwide Human Biomonitoring Results

    Get PDF
    [[abstract]]Background: One of the most serious human health concerns related to environmental contamination with polychlorinated biphenyls (PCBs) is the presence of these chemicals in breast milk. Objectives: We developed a physiologically based pharmacokinetic model of PCB-153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB-153. Data in the literature provided estimates for model development and for performance assessment. Methods: We used physiologic parameters from a cohort in Taiwan and reference values given in the literature to estimate partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data from Japan, we predicted acquired body burden of PCB-153 at an average childbearing age of 25 years and compared predictions to measurements from studies in multiple countries. We attempted one example of reverse dosimetry modeling using our PBPK model for possible exposure scenarios in Canadian Inuits, the population with the highest breast milk PCB-153 level in the world. Results: Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. Conclusion: The model successfully describes the range of possible PCB-153 dispositions in maternal milk, suggesting a promising option for back-estimating doses for various populations

    TRPV1 is a Responding Channel for Acupuncture Manipulation in Mice Peripheral and Central Nerve System

    Get PDF
    Background/Aims: Acupuncture involves inserting a fine needle into a specific point, often called an acupoint, thereby initiating a therapeutic effect accompanied by phenomena such as soreness, heaviness, fullness, and numbness. Acupoints are characterized as points located in deep tissues with abundant sensory nerve terminals, which suggests that there is a strong relationship between acupoints and peripheral sensory afferents. In this study, we determined whether manual acupuncture (MA) or different frequencies of electroacupuncture (EA) share similar mechanisms for activating excitatory neurotransmission. Methods: We performed MA or EA at acupoint ST36 and we also used western blot and immunostaining techniques to determine neural changes at the peripheral dorsal root ganglion (DRG), spinal cord (SC), and somatosensory cortex (SSC) levels. Results: Our results show that either MA or EA at the ST36 acupoint significantly increased components of the TRPV1-related signaling pathway, such as pPKA, pPI3K, pPKC-pERK, and pAKT (but not pp38 or pJNK) at the peripheral DRG and central SC-SSC levels. Furthermore, excitatory phosphorylated N-methyl-D-aspartate receptor (pNMDA) and pCaMKIIα (but not pNR2B, pCaMKIIδ, or pCaMKIIγ) also increased. These molecules could not increase in the DRG and SC-SSC of TRPV1–/–mice. Conclusion: Our data demonstrates that both MA and EA can activate excitatory signals in either peripheral or central levels. We also define that TRPV1 is crucial for an acupuncture effect and then initiate excitatory pNR1-pCaMKII pathway, at peripheral DRG and central SC-SSC level. We suggest that the TRPV1 signaling pathway is highly correlated to Acupuncture effect that implies the real clinical significance

    Extracorporeal membrane oxygenation for neonatal congenital diaphragmatic hernia: The initial single-center experience in Taiwan

    Get PDF
    Background/Purpose Extracorporeal membrane oxygenation (ECMO) is a treatment option for stabilizing neonates with congenital diaphragmatic hernia (CDH) in a critical condition when standard therapy fails. However, the use of this approach in Taiwan has not been previously reported. Methods The charts of all neonates with CDH treated in our institute during the period 2007–2014 were reviewed. After 2010, patients who could not be stabilized with conventional treatment were candidates for ECMO. We compared the demographic data of patients with and without ECMO support. The clinical course and complications of ECMO were also reviewed. Results We identified 39 neonates with CDH with a median birth weight of 2696 g (range, 1526–3280 g). Seven (18%) of these patients required ECMO support. The APGAR score at 5 minutes differed significantly between the ECMO and non-ECMO groups. The survival rate was 84.6% (33/39) for all CDH patients and 57.1% (4/7) for the ECMO group. The total ECMO bypass times in the survivors was in the range of 5–36 days, whereas all nonsurvivors received ECMO for at least 36 days (mean duration, 68 days). Surgical bleeding occurred in four of seven patients in the ECMO group. Conclusion The introduction of ECMO rescued some CDH patients who could not have survived by conventional management. Prolonged (i.e., > 36 days) ECMO support had no benefit for survival

    Cytotoxic Effects of CdSe Quantum Dots on Maturation of Mouse Oocytes, Fertilization, and Fetal Development

    Get PDF
    Quantum dots (QDs) are useful novel luminescent markers, but their embryonic toxicity is yet to be fully established, particularly in oocyte maturation and sperm fertilization. Earlier experiments by our group show that CdSe-core QDs have cytotoxic effects on mouse blastocysts and are associated with defects in subsequent development. Here, we further investigate the influence of CdSe-core QDs on oocyte maturation, fertilization, and subsequent pre- and postimplantation development. CdSe-core QDs induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryo development, but not ZnS-coated CdSe QDs. Treatment of oocytes with 500 nM CdSe-core QDs during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased placental and fetal weights. To our knowledge, this is the first study to report the negative impact of CdSe-core QDs on mouse oocyte development. Moreover, surface modification of CdSe-core QDs with ZnS effectively prevented this cytotoxicity

    A Longitudinal Historical Population Database in Asia. The Taiwanese Historical Household Registers Database (1906–1945)

    Get PDF
    For the past 35 years, the Taiwan Historical Household Registers Database (THHRD) has been significant for historical demographic research on Asia. In recent years, researchers have continued adding new demographic information to the database. This allows for the expansion of research on the topic of historical households in the region. However, there are still many issues to address in the field of Asian historical demography. This paper provides a brief introduction on the uses of THHRD for future research
    corecore