12 research outputs found

    A Catalytic Mechanism for Cysteine N-Terminal Nucleophile Hydrolases, as Revealed by Free Energy Simulations

    Get PDF
    The N-terminal nucleophile (Ntn) hydrolases are a superfamily of enzymes specialized in the hydrolytic cleavage of amide bonds. Even though several members of this family are emerging as innovative drug targets for cancer, inflammation, and pain, the processes through which they catalyze amide hydrolysis remains poorly understood. In particular, the catalytic reactions of cysteine Ntn-hydrolases have never been investigated from a mechanistic point of view. In the present study, we used free energy simulations in the quantum mechanics/molecular mechanics framework to determine the reaction mechanism of amide hydrolysis catalyzed by the prototypical cysteine Ntn-hydrolase, conjugated bile acid hydrolase (CBAH). The computational analyses, which were confirmed in water and using different CBAH mutants, revealed the existence of a chair-like transition state, which might be one of the specific features of the catalytic cycle of Ntn-hydrolases. Our results offer new insights on Ntn-mediated hydrolysis and suggest possible strategies for the creation of therapeutically useful inhibitors

    Challenges in IBD Research: Novel Technologies

    No full text
    Novel technologies is part of five focus areas of the Challenges in IBD research document, which also includes preclinical human IBD mechanisms, environmental triggers, precision medicine and pragmatic clinical research. The Challenges in IBD research document provides a comprehensive overview of current gaps in inflammatory bowel diseases (IBD) research and delivers actionable approaches to address them. It is the result of a multidisciplinary input from scientists, clinicians, patients, and funders, and represents a valuable resource for patient centric research prioritization. In particular, the novel technologies section is focused on prioritizing unmet clinical needs in IBD that will benefit from novel technologies applied to: 1) non-invasive detection and monitoring of active inflammation and assessment of treatment response; 2) mucosal targeted drug delivery systems; and 3) prevention of post-operative septic complications and treatment of fistulizing complications. Proposed approaches include development of multiparametric imaging modalities and biosensors, to enable non invasive or minimally invasive detection of pro-inflammatory signals to monitor disease activity and treatment responses. Additionally, technologies for local drug delivery to control unremitting disease and increase treatment efficacy while decreasing systemic exposure are also proposed. Finally, research on biopolymers and other sealant technologies to promote post-surgical healing; and devices to control anastomotic leakage and prevent post-surgical complications and recurrences are also needed
    corecore