6 research outputs found

    Three–Dimensional Seismic Diffraction Imaging for Detecting Near-Surface Inhomogeneities

    Get PDF
    One of the problems encountered in a variety of near-surface investigations is detecting and mapping localized inhomogeneities. Typical examples of such inhomogeneous sources are cavities, caves and tunnels. Different methods for detecting shallow subsurface sources utilizing seismic waves diffracted by these sources were proposed by many researchers in the last three decades. Most of these methods suggest that every subsurface point is a possible location of a point diffractor. Imaging of the diffractors is based on a spatial summation of the diffracted wavefield along diffraction time surfaces (defined by source-receiver geometry) in 2D or 3D space. The summation is performed with a fixed velocity value estimated from velocity analysis of the diffraction data. In this study, we present a path integral summation approach, where for every subsurface point the wavefield is stacked together along all possible diffraction time surfaces having a common apex at a given time. The result of the imaging is a 3D volume in which prominent diffraction anomalies appear at spatial locations close to the imaged sources. This path integral summation approach has been successfully tested on synthetic data and further applied at several sites with known subsurface sources

    Heletz experimental site overview, characterization and data analysis for CO2 injection and geological storage

    Get PDF
    International audienceThis paper provides an overview of the site characterization work at the Heletz site, in preparation to scientifically motivated CO2 injection experiments. The outcomes are geological and hydrogeological models with associated medium properties and baseline conditions. The work has consisted on first re-analyzing the existing data base from ∼40 wells from the previous oil exploration studies, based on which a 3-dimensional structural model was constructed along with first estimates of the properties. The CO2 injection site is located on the saline edges of the Heletz depleted oil field. Two new deep (>1600 m) wells were drilled within the injection site and from these wells a detailed characterization program was carried out, including coring, core analyses, fluid sampling, geophysical logging, seismic survey, in situ hydraulic testing and measurement of the baseline pressure and temperature. The results are presented and discussed in terms of characteristics of the reservoir and cap-rock, the mineralogy, water composition and other baseline conditions, porosity, permeability, capillary pressure and relative permeability. Special emphasis is given to petrophysical properties of the reservoir and the seal, such as comparing the estimates determined by different methods, looking at their geostatistical distributions as well as changes in them when exposed to CO2

    Interwell field test to determine in-situ CO2 trapping in a deep saline aquifer : Modelling study of the effects of test design and geological parameters

    No full text
    An interwell field test to determine residual phase and dissolution trapping of CO2 is being designed at Heletz, Israel. Effects of test-design options and geological parameters were investigated using numerical modelling. It was found that the interwell distance has large influence on the feasibility of the test both in terms of creation of a zone of residually trapped CO2 and detection of the time when such zone has been created. The optimal distance is site-specific and depends on formation properties. Alternating CO2 and brine injections slightly increased residual trapping, but did not facilitate creation of a well-defined zone of trapping

    Risk assessment of MUSTANG project experimental site–Methodological development

    Get PDF
    AbstractOne of the work packages of MUSTANG (MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe) EU project is dedicated to developing a generic methodology for risk assessment related to CO2 in saline aquifers and applying the methodology to an experimental site. This paper presents the work done by OXAND regarding risk assessment and the application of a risk-based approach to the qualification of the storage site ultimately to provide guidelines for further industrial storage projects.The risk assessment process is presented, and illustrated with the data of an experimental site. The eight steps of the risk assessment process highlighted in the ISO 31000 are described in this paper: Risk management policy, establishment of the context, risk identification, risk estimation, risk evaluation, risk treatment, communication and consultation, and monitoring and review
    corecore