59 research outputs found

    Some results of cislunar plasma research

    Get PDF
    The main results of plasma cislunar investigations, carried out during Luna-19 and Luna-22 spacecraft flights by means of dual frequency dispersion interferrometry, are briefly outlined. It is shown that a thin layer of plasma, with a height of several tens of kilometers and a maximum concentration of the order 1,000 electrons/cu cm exists above the solar illuminated lunar surface. A physical model of the formation and existence of such a plasma in cislunar space is proposed, taking into account the influence of local magnetic areas on the moon

    The nighttime ionosphere of Mars from Mars-4 and Mars-5 radio occultation dual-frequency measurements

    Get PDF
    Dual frequency radio sounding of the Martian nighttime ionosphere was carried out during the exits from behind the planet of the Mars-4 spacecraft on February 2, 1974 and the Mars-5 spacecraft on February 18, 1974. In these experiments, the spacecraft transmitter emitted two coherent monochromatic signals in decimeter and centimeter wavelength ranges. At the Earth receiving station, the reduced phase difference (or frequencies) of these signals was measured. The nighttime ionosphere of Mars measured in both cases had a peak electron density of approximately 5 X 1,000/cu cm at an altitude of 110 to 130 km. At the times of spacecraft exit, the solar zenith angles at the point of occultation were 127 deg and 106 deg, respectively. The height profiles of electron concentration were obtained assuming spherical symmetry of the Martian ionosphere

    Reflexive representability and stable metrics

    Full text link
    It is well-known that a topological group can be represented as a group of isometries of a reflexive Banach space if and only if its topology is induced by weakly almost periodic functions (see \cite{Shtern:CompactSemitopologicalSemigroups}, \cite{Megrelishvili:OperatorTopologies} and \cite{Megrelishvili:TopologicalTransformations}). We show that for a metrisable group this is equivalent to the property that its metric is uniformly equivalent to a stable metric in the sense of Krivine and Maurey (see \cite{Krivine-Maurey:EspacesDeBanachStables}). This result is used to give a partial negative answer to a problem of Megrelishvili

    Scalable Massively Parallel Artificial Neural Networks

    Full text link
    There is renewed interest in computational intelligence, due to advances in algorithms, neuroscience, and computer hardware. In addition there is enormous interest in autonomous vehicles (air, ground, and sea) and robotics, which need significant onboard intelligence. Work in this area could not only lead to better understanding of the human brain but also very useful engineering applications. The functioning of the human brain is not well understood, but enormous progress has been made in understanding it and, in particular, the neocortex. There are many reasons to develop models of the brain. Artificial Neural Networks (ANN), one type of model, can be very effective for pattern recognition, function approximation, scientific classification, control, and the analysis of time series data. ANNs often use the back-propagation algorithm for training, and can require large training times especially for large networks, but there are many other types of ANNs. Once the network is trained for a particular problem, however, it can produce results in a very short time. Parallelization of ANNs could drastically reduce the training time. An object-oriented, massively-parallel ANN (Artificial Neural Network) software package SPANN (Scalable Parallel Artificial Neural Network) has been developed and is described here. MPI was use

    An analogue of the Coleman-Mandula theorem for quantum field theory in curved spacetimes

    Get PDF
    The Coleman-Mandula (CM) theorem states that the Poincaré and internal symmetries of a Minkowski spacetime quantum field theory cannot combine nontrivially in an extended symmetry group. We establish an analogous result for quantum field theory in curved spacetimes, assuming local covariance, the timeslice property, a local dynamical form of Lorentz invariance, and additivity. Unlike the CM theorem, our result is valid in dimensions n≥2 and for free or interacting theories. It is formulated for theories defined on a category of all globally hyperbolic spacetimes equipped with a global coframe, on which the restricted Lorentz group acts, and makes use of a general analysis of symmetries induced by the action of a group G on the category of spacetimes. Such symmetries are shown to be canonically associated with a cohomology class in the second degree nonabelian cohomology of G with coefficients in the global gauge group of the theory. Our main result proves that the cohomology class is trivial if G is the universal cover S of the restricted Lorentz group. Among other consequences, it follows that the extended symmetry group is a direct product of the global gauge group and S, all fields transform in multiplets of S, fields of different spin do not mix under the extended group, and the occurrence of noninteger spin is controlled by the centre of the global gauge group. The general analysis is also applied to rigid scale covariance

    Technology and Investigation of Ohmic Contacts to Thermoelectric Materials

    No full text
    Technology is developed, materials and regimes of the fabrication of ohmic contacts to the effective thermoelectric materials Bi2Te2.8Se0.2Bi_{2}Te_{2.8}Se_{0.2} (n-type) and Bi0.5Sb1.5Te3Bi_{0.5}Sb_{1.5}Te_{3} (p-type) are determined. Ohmic contacts were obtained by the vacuum deposition of nickel. Factors determining adhesion strength and resistivity of fabricated contacts are determined. Process of surface preparation of the thermoelectric materials before the ohmic contact deposition is optimized during the technology development. The use of electrochemical polishing, ultrasound treatment, finish cleaning in toluene and isopropyl alcohol vapor, and annealing in vacuum allowed achieving stable results in the formation of contacts. It was shown that contacts fabricated using of electron-beam evaporation of nickel possess maximum adhesion strength of 18-19 N/mm². It was found that high adhesion is caused by the existence of transition layer in the metal-thermoelectric material contact range, formed due to the interaction of metal with the components of thermoelectric material. Proposed technology allows obtaining ohmic contacts with the resistance of the unit area not exceeding 101010^{-10} Ohm m²
    corecore