27 research outputs found

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The Art of Sim-Making: What to Learn from Film-Making

    Get PDF
    The components of each stage have similarities as well as differences, which make each unique in its own right. As the film-making and the movie industry may have much we can learn from, some of these will be covered under the different sections of the paper, for example, Writing Powerful Narratives, depiction of emotional elements, specific industry-driven developments as well as the cultural considerations in both. For medical simulation and simulation-based education, the corresponding stages are as follows: DevelopmentPreproductionProductionPostproduction andDistribution. The art of sim-making has many similarities to that of film-making. In fact, there is potentially much to be learnt from the film-making process in cinematography and storytelling. Both film-making and sim-making can be seen from the artistic perspective as starting with a large piece of blank, white sheet of paper, which will need to be colored by the artists and personnel involved; in the former, to come up with the film and for the latter, to engage learners and ensure learning takes place, which is then translated into action for patients in the actual clinical care areas. Both entities have to go through a series of systematic stages. For film-making, the stages are as follows: Identification of problems and needs analysisSetting objectives, based on educational strategiesImplementation of the simulation activityDebriefing and evaluation, as well asFine-tuning for future use and archiving of scenarios/cases

    The brain in pediatric critical care: unique aspects of assessment, monitoring, investigations, and follow-up

    No full text
    As survival after pediatric intensive care unit (PICU) admission has improved over recent years, a key focus now is the reduction of morbidities and optimization of quality of life for survivors. Neurologic disorders and direct brain injuries are the reason for 11-16% of admissions to PICU. In addition, many critically ill children are at heightened risk of brain injury and neurodevelopmental difficulties affecting later life, e.g., complex heart disease and premature birth. Hence, assessment, monitoring and protection of the brain, using fundamental principles of neurocritical care, are crucial to the practice of pediatric intensive care medicine. The assessment of brain function, necessary to direct appropriate care, is uniquely challenging amongst children admitted to the PICU. Challenges in assessment arise in children who are unstable, or pharmacologically sedated and muscle relaxed, or who have premorbid abnormality in development. Moreover, the heterogeneity of diseases and ages in PICU patients, means that high caliber evidence is harder to accrue than in adult practice, nonetheless, great progress has been made over recent years. In this 'state of the art' paper about critically ill children, we discuss (1) patient types at risk of brain injury, (2) new standardized clinical assessment tools for age-appropriate, clinical evaluation of brain function, (3) latest evidence related to cranial imaging, non-invasive and invasive monitoring of the brain, (4) the concept of childhood 'post intensive are syndrome' and approaches for neurodevelopmental follow-up. Better understanding of these concepts is vital for taking PICU survivorship to the next level

    Biosafety Assessment of Site-directed Transgene Integration in Human Umbilical Cord–lining Cells

    No full text
    Biosafety and efficacy considerations that impede clinical application of gene therapy could be addressed by nonviral ex vivo cell therapy, utilizing transgenic cells that have been comprehensively pre-evaluated for genotoxic potential and transgene expression. We evaluated the genotoxic potential of phiC31 bacteriophage integrase-mediated transgene integration in cord-lining epithelial cells (CLECs) readily cultured from the outer membrane of human umbilical cords, by sequencing and mapping integration sites, spectral karyotyping, high-resolution genome copy number, transcriptome, and transgene copy number analyses and in vivo tumorigenicity. Of 44 independent integration events, <5% were exonic and 85% of modified cells had integrated ≤2 transgene(s). Expression of 95.6% of genes was unaltered in modified cells. Only three small regions showed genome copy number changes that did not correlate with altered gene expression or integration sites. Spectral karyotyping revealed rare nonrecurrent occurrence of three different translocations. Integrase-modified cells were not tumorigenic in immunocompromised mice for at least 4 months. Stable integration of a human factor VIII (FVIII) construct conferred durable FVIII secretion in vitro. Xenoimplantation of FVIII-secreting CLECs in immunocompetent hemophilic mice achieved significant phenotypic correction. Pre-evaluated clonal populations of phiC31 integrase–modified CLECs could be useful as bioimplants for monogenic diseases such as hemophilia
    corecore