9 research outputs found

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumor-infiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment. Tumor-infiltrating lymphocytes (TILs) were identified from standard pathology cancer images by a deep-learning-derived \u201ccomputational stain\u201d developed by Saltz et al. They processed 5,202 digital images from 13 cancer types. Resulting TIL maps were correlated with TCGA molecular data, relating TIL content to survival, tumor subtypes, and immune profiles

    Molecular events in uterine cervical cancer

    No full text
    OBJECTIVE: To review the literature regarding the molecular events which occur in the development of uterine cervical cancer, with particular reference to human papillomavirus (HPV) infection. METHODOLOGY: Bibliographic searches of Medline and the ISI citation databases using appropriate keywords, including the following: papillomavirus, cervix, pathology, cyclin, chromosome, heterozygosity, telomerase, smoking, hormones, HLA, immune response, HIV, HSV, EBV. CONCLUSIONS: It has become clear that most cervical neoplasia, whether intraepithelial or invasive, is attributable in part to HPV infection. However, HPV infection alone is not sufficient, and, in a small proportion of cases, may not be necessary for malignant transformation. There is increasing evidence that HPV gene products interfere with cell cycle control leading to secondary accumulation of small and large scale genetic abnormalities. This may explain the association of viral persistence with lesion progression but, in many patients, secondary factors, such as smoking and immune response, are clearly important. However, the mechanisms involved in the interaction between HPV and host factors are poorly understood. 



    Pathogenesis of genital HPV infection.

    No full text

    Oral Manifestations of Viral Diseases

    No full text
    corecore