1,493 research outputs found

    Ground State Entropy of the Potts Antiferromagnet on Strips of the Square Lattice

    Full text link
    We present exact solutions for the zero-temperature partition function (chromatic polynomial PP) and the ground state degeneracy per site WW (= exponent of the ground-state entropy) for the qq-state Potts antiferromagnet on strips of the square lattice of width LyL_y vertices and arbitrarily great length LxL_x vertices. The specific solutions are for (a) Ly=4L_y=4, (FBCy,PBCx)(FBC_y,PBC_x) (cyclic); (b) Ly=4L_y=4, (FBCy,TPBCx)(FBC_y,TPBC_x) (M\"obius); (c) Ly=5,6L_y=5,6, (PBCy,FBCx)(PBC_y,FBC_x) (cylindrical); and (d) Ly=5L_y=5, (FBCy,FBCx)(FBC_y,FBC_x) (open), where FBCFBC, PBCPBC, and TPBCTPBC denote free, periodic, and twisted periodic boundary conditions, respectively. In the LxL_x \to \infty limit of each strip we discuss the analytic structure of WW in the complex qq plane. The respective WW functions are evaluated numerically for various values of qq. Several inferences are presented for the chromatic polynomials and analytic structure of WW for lattice strips with arbitrarily great LyL_y. The absence of a nonpathological LxL_x \to \infty limit for real nonintegral qq in the interval 0<q<30 < q < 3 (0<q<40 < q < 4) for strips of the square (triangular) lattice is discussed.Comment: 37 pages, latex, 4 encapsulated postscript figure

    Exact Potts Model Partition Functions on Strips of the Honeycomb Lattice

    Full text link
    We present exact calculations of the partition function of the qq-state Potts model on (i) open, (ii) cyclic, and (iii) M\"obius strips of the honeycomb (brick) lattice of width Ly=2L_y=2 and arbitrarily great length. In the infinite-length limit the thermodynamic properties are discussed. The continuous locus of singularities of the free energy is determined in the qq plane for fixed temperature and in the complex temperature plane for fixed qq values. We also give exact calculations of the zero-temperature partition function (chromatic polynomial) and W(q)W(q), the exponent of the ground-state entropy, for the Potts antiferromagnet for honeycomb strips of type (iv) Ly=3L_y=3, cyclic, (v) Ly=3L_y=3, M\"obius, (vi) Ly=4L_y=4, cylindrical, and (vii) Ly=4L_y=4, open. In the infinite-length limit we calculate W(q)W(q) and determine the continuous locus of points where it is nonanalytic. We show that our exact calculation of the entropy for the Ly=4L_y=4 strip with cylindrical boundary conditions provides an extremely accurate approximation, to a few parts in 10510^5 for moderate qq values, to the entropy for the full 2D honeycomb lattice (where the latter is determined by Monte Carlo measurements since no exact analytic form is known).Comment: 48 pages, latex, with encapsulated postscript figure

    T=0 Partition Functions for Potts Antiferromagnets on Lattice Strips with Fully Periodic Boundary Conditions

    Full text link
    We present exact calculations of the zero-temperature partition function for the qq-state Potts antiferromagnet (equivalently, the chromatic polynomial) for families of arbitrarily long strip graphs of the square and triangular lattices with width Ly=4L_y=4 and boundary conditions that are doubly periodic or doubly periodic with reversed orientation (i.e. of torus or Klein bottle type). These boundary conditions have the advantage of removing edge effects. In the limit of infinite length, we calculate the exponent of the entropy, W(q)W(q) and determine the continuous locus B{\cal B} where it is singular. We also give results for toroidal strips involving ``crossing subgraphs''; these make possible a unified treatment of torus and Klein bottle boundary conditions and enable us to prove that for a given strip, the locus B{\cal B} is the same for these boundary conditions.Comment: 43 pages, latex, 4 postscript figure

    Potts Model Partition Functions for Self-Dual Families of Strip Graphs

    Full text link
    We consider the qq-state Potts model on families of self-dual strip graphs GDG_D of the square lattice of width LyL_y and arbitrarily great length LxL_x, with periodic longitudinal boundary conditions. The general partition function ZZ and the T=0 antiferromagnetic special case PP (chromatic polynomial) have the respective forms j=1NF,Ly,λcF,Ly,j(λF,Ly,j)Lx\sum_{j=1}^{N_{F,L_y,\lambda}} c_{F,L_y,j} (\lambda_{F,L_y,j})^{L_x}, with F=Z,PF=Z,P. For arbitrary LyL_y, we determine (i) the general coefficient cF,Ly,jc_{F,L_y,j} in terms of Chebyshev polynomials, (ii) the number nF(Ly,d)n_F(L_y,d) of terms with each type of coefficient, and (iii) the total number of terms NF,Ly,λN_{F,L_y,\lambda}. We point out interesting connections between the nZ(Ly,d)n_Z(L_y,d) and Temperley-Lieb algebras, and between the NF,Ly,λN_{F,L_y,\lambda} and enumerations of directed lattice animals. Exact calculations of PP are presented for 2Ly42 \le L_y \le 4. In the limit of infinite length, we calculate the ground state degeneracy per site (exponent of the ground state entropy), W(q)W(q). Generalizing qq from Z+{\mathbb Z}_+ to C{\mathbb C}, we determine the continuous locus B{\cal B} in the complex qq plane where W(q)W(q) is singular. We find the interesting result that for all LyL_y values considered, the maximal point at which B{\cal B} crosses the real qq axis, denoted qcq_c is the same, and is equal to the value for the infinite square lattice, qc=3q_c=3. This is the first family of strip graphs of which we are aware that exhibits this type of universality of qcq_c.Comment: 36 pages, latex, three postscript figure

    End Graph Effects on Chromatic Polynomials for Strip Graphs of Lattices and their Asymptotic Limits

    Full text link
    We report exact calculations of the ground state degeneracy per site (exponent of the ground state entropy) W({G},q)W(\{G\},q) of the qq-state Potts antiferromagnet on infinitely long strips with specified end graphs for free boundary conditions in the longitudinal direction and free and periodic boundary conditions in the transverse direction. This is equivalent to calculating the chromatic polynomials and their asymptotic limits for these graphs. Making the generalization from qZ+q \in {\mathbb Z}_+ to qCq \in {\mathbb C}, we determine the full locus B{\cal B} on which WW is nonanalytic in the complex qq plane. We report the first example for this class of strip graphs in which B{\cal B} encloses regions even for planar end graphs. The bulk of the specific strip graph that exhibits this property is a part of the (3342)(3^3 \cdot 4^2) Archimedean lattice.Comment: 27 pages, Revtex, 11 encapsulated postscript figures, Physica A, in pres

    Exact Potts Model Partition Function on Strips of the Triangular Lattice

    Full text link
    In this paper we present exact calculations of the partition function ZZ of the qq-state Potts model and its generalization to real qq, for arbitrary temperature on nn-vertex strip graphs, of width Ly=2L_y=2 and arbitrary length, of the triangular lattice with free, cyclic, and M\"obius longitudinal boundary conditions. These partition functions are equivalent to Tutte/Whitney polynomials for these graphs. The free energy is calculated exactly for the infinite-length limit of the graphs, and the thermodynamics is discussed. Considering the full generalization to arbitrary complex qq and temperature, we determine the singular locus B{\cal B} in the corresponding C2{\mathbb C}^2 space, arising as the accumulation set of partition function zeros as nn \to \infty. In particular, we study the connection with the T=0 limit of the Potts antiferromagnet where B{\cal B} reduces to the accumulation set of chromatic zeros. Comparisons are made with our previous exact calculation of Potts model partition functions for the corresponding strips of the square lattice. Our present calculations yield, as special cases, several quantities of graph-theoretic interest.Comment: 43 pages, latex, 24 postscript figures, Physica A, in pres

    Ground State Entropy in Potts Antiferromagnets and Chromatic Polynomials

    Full text link
    We discuss recent results on ground state entropy in Potts antiferromagnets and connections with chromatic polynomials. These include rigorous lower and upper bounds, Monte Carlo measurements, large--qq series, exact solutions, and studies of analytic properties. Some related results on Fisher zeros of Potts models are also mentioned.Comment: LATTICE98(spin) 3 pages, Late

    T=0 Partition Functions for Potts Antiferromagnets on Moebius Strips and Effects of Graph Topology

    Full text link
    We present exact calculations of the zero-temperature partition function of the qq-state Potts antiferromagnet (equivalently the chromatic polynomial) for Moebius strips, with width Ly=2L_y=2 or 3, of regular lattices and homeomorphic expansions thereof. These are compared with the corresponding partition functions for strip graphs with (untwisted) periodic longitudinal boundary conditions.Comment: 9 pages, Latex, Phys. Lett. A, in pres
    corecore