Abstract

We consider the qq-state Potts model on families of self-dual strip graphs GDG_D of the square lattice of width LyL_y and arbitrarily great length LxL_x, with periodic longitudinal boundary conditions. The general partition function ZZ and the T=0 antiferromagnetic special case PP (chromatic polynomial) have the respective forms j=1NF,Ly,λcF,Ly,j(λF,Ly,j)Lx\sum_{j=1}^{N_{F,L_y,\lambda}} c_{F,L_y,j} (\lambda_{F,L_y,j})^{L_x}, with F=Z,PF=Z,P. For arbitrary LyL_y, we determine (i) the general coefficient cF,Ly,jc_{F,L_y,j} in terms of Chebyshev polynomials, (ii) the number nF(Ly,d)n_F(L_y,d) of terms with each type of coefficient, and (iii) the total number of terms NF,Ly,λN_{F,L_y,\lambda}. We point out interesting connections between the nZ(Ly,d)n_Z(L_y,d) and Temperley-Lieb algebras, and between the NF,Ly,λN_{F,L_y,\lambda} and enumerations of directed lattice animals. Exact calculations of PP are presented for 2Ly42 \le L_y \le 4. In the limit of infinite length, we calculate the ground state degeneracy per site (exponent of the ground state entropy), W(q)W(q). Generalizing qq from Z+{\mathbb Z}_+ to C{\mathbb C}, we determine the continuous locus B{\cal B} in the complex qq plane where W(q)W(q) is singular. We find the interesting result that for all LyL_y values considered, the maximal point at which B{\cal B} crosses the real qq axis, denoted qcq_c is the same, and is equal to the value for the infinite square lattice, qc=3q_c=3. This is the first family of strip graphs of which we are aware that exhibits this type of universality of qcq_c.Comment: 36 pages, latex, three postscript figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019