21 research outputs found

    An Explainable-AI approach for Diagnosis of COVID-19 using MALDI-ToF Mass Spectrometry

    Full text link
    The severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) caused a global pandemic and imposed immense effects on the global economy. Accurate, cost-effective, and quick tests have proven substantial in identifying infected people and mitigating the spread. Recently, multiple alternative platforms for testing coronavirus disease 2019 (COVID-19) have been published that show high agreement with current gold standard real-time polymerase chain reaction (RT-PCR) results. These new methods do away with nasopharyngeal (NP) swabs, eliminate the need for complicated reagents, and reduce the burden on RT-PCR test reagent supply. In the present work, we have designed an artificial intelligence-based (AI) testing method to provide confidence in the results. Current AI applications to COVID-19 studies often lack a biological foundation in the decision-making process, and our AI approach is one of the earliest to leverage explainable-AI (X-AI) algorithms for COVID-19 diagnosis using mass spectrometry. Here, we have employed X-AI to explain the decision-making process on a local (per-sample) and global (all samples) basis underscored by biologically relevant features. We evaluated our technique with data extracted from human gargle samples and achieved a testing accuracy of 94.44%. Such techniques would strengthen the relationship between AI and clinical diagnostics by providing biomedical researchers and healthcare workers with trustworthy and, most importantly, explainable test results

    COVID-19 infection rates and mitigation strategies in orthodontic practices

    No full text
    BACKGROUND: COVID-19 has impacted and increased risks for all populations, including orthodontic patients and providers. It also changes the practice management and infection control landscape in the practices. This study aimed to investigate the COVID-19 infection and vaccination status of orthodontic providers and mitigation approaches in orthodontic practices in the United States during 2021. METHODS: A validated 50-question research electronic data capture (REDCap) browser-based questionnaire was distributed to 12,393 orthodontists and pediatric dentists who reported actively providing orthodontic treatment. Questions were designed to collect demographic data of respondents, evaluate the COVID-19 mitigation approaches, and evaluate the history of COVID-19 infection and vaccination status of the orthodontic providers. Associations of demographic and the COVID-19 mitigation approaches were assessed using chi-square tests at the significance level of 0.05. RESULTS: Four hundred fifty-seven returned the survey (response rate 3.69%) for analysis. Most respondents were vaccinated, and increased infection control measures in response to the pandemic. Half of the respondents practiced teledentistry and switched to digital impression systems. Two-thirds reported difficulties in attaining PPEs due to the increased cost and scarcity of PPEs. About 6% of respondents reported a history of COVID-19 infection, and 68.9% of their staff had COVID-19 infection. Statistically significant associations were found between increased practice experience with difficulties in acquiring PPE (p = .010). There were no significant associations between races of respondents, geographic location, and years of practicing when cross-tabulated with vaccination status or COVID-19 infection rate (p > .05). CONCLUSION: Increased infection control strategies were employed in almost all orthodontic practices in addition to existing universal precaution. Most of the orthodontic providers and their staff members were vaccinated. While staff's infection rates were an issue, doctors' infection rates remained low.</p

    Cyst Fluid Biosignature to Predict Intraductal Papillary Mucinous Neoplasms of the Pancreas with High Malignant Potential

    No full text
    BACKGROUND: Current standard-of-care technologies, such as imaging and cyst fluid analysis, are unable to consistently distinguish intraductal papillary mucinous neoplasms (IPMNs) of the pancreas at high risk of pancreatic cancer from low-risk IPMNs. The objective was to create a single-platform assay to identify IPMNs that are at high risk for malignant progression.STUDY DESIGN: Building on the Verona International Consensus Conference branch duct IPMN biomarker review, additional protein, cytokine, mucin, DNA, and microRNA cyst fluid targets were identified for creation of a quantitative polymerase chain reaction-based assay. This included messenger RNA markers: ERBB2, GNAS, interleukin 1 beta, KRAS, MUCs1, 2, 4, 5AC, 7, prostaglandin E2R, PTGER2, prostaglandin E synthase 2, prostaglandin E synthase 1, TP63; microRNA targets: miRs 101, 106b, 10a, 142, 155, 17, 18a, 21, 217, 24, 30a, 342, 532, 92a, and 99b; and GNAS and KRAS mutational analysis. A multi-institutional international collaborative contributed IPMN cyst fluid samples to validate this platform. Cyst fluid gene expression levels were normalized, z-transformed, and used in classification and regression analysis by a support vector machine training algorithm.RESULTS: From cyst fluids of 59 IPMN patients, principal component analysis confirmed no institutional bias/clustering. Lasso (least absolute shrinkage and selection operator)-penalized logistic regression with binary classification and 5-fold cross-validation used area under the curve as the evaluation criterion to create the optimal signature to discriminate IPMNs as low risk (low/moderate dysplasia) or high risk (high-grade dysplasia/invasive cancer). The most predictive signature was achieved with interleukin 1 beta, MUC4, and prostaglandin E synthase 2 to accurately discriminate high-risk cysts from low-risk cysts with an area under the curve of up to 0.86 (p = 0.002).CONCLUSIONS: We have identified a single-platform polymerase chain reaction-based assay of cyst fluid to accurately predict IPMNs with high malignant potential for additional studies. (C) 2019 by the American College of Surgeons. Published by Elsevier Inc. All rights reserved
    corecore