16 research outputs found

    GRIM-1, a Novel Growth Suppressor, Inhibits rRNA Maturation by Suppressing Small Nucleolar RNAs

    Get PDF
    We have recently isolated novel IFN-inducible gene, Gene associated with Retinoid-Interferon-induced Mortality-1 (GRIM-1), using a genetic technique. Moderate ectopic expression of GRIM-1 caused growth inhibition and sensitized cells to retinoic acid (RA)/IFN-induced cell death while high expression caused apoptosis. GRIM-1 depletion, using RNAi, conferred a growth advantage. Three protein isoforms (1Ξ±, 1Ξ² and 1Ξ³) with identical C-termini are produced from GRIM-1 mRNA. We show that GRIM-1 isoforms interact with NAF1 and DKC1, two essential proteins required for box H/ACA sno/sca RNP biogenesis and suppresses box H/ACA RNA levels in mammalian cells by delocalizing NAF1. Suppression of these small RNAs manifests as inefficient rRNA maturation and growth suppression. Interestingly, yeast Shq1p also caused growth suppression in mammalian cells. Consistent with its growth-suppressive property, GRIM-1 expression is lost in a number of human primary prostate tumors. Our observations support a recent study that GRIM-1 might act as a co-tumor suppressor in the prostate

    GRIM-19 Disrupts E6/E6AP Complex to Rescue p53 and Induce Apoptosis in Cervical Cancers

    Get PDF
    BACKGROUND: Our previous studies showed a down-regulation of GRIM-19 in primary human cervical cancers, and restoration of GRIM-19 induced tumor regression. The induction of tumor suppressor protein p53 ubiquitination and degradation by E6 oncoportein of high risk-HPV through forming a stable complex with E6AP is considered as a critical mechanism for cervical tumor development. The aims of this study were to determine the potential role of GRIM-19 in rescuing p53 protein and inducing cervical cancer cell apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The protein levels of GRIM-19 and p53 were detected in normal cervical tissues from 45 patients who underwent hysterectomy for reasons other than neoplasias of either the cervix or endometrium, and cervical cancer tissues from 60 patients with non-metastatic squamous epithelial carcinomas. Coimmunoprecipitation and GST pull-down assay were performed to examine the interaction of GRIM-19 with 18E6 and E6AP in vivo and in vitro respectively. The competition of 18E6 with E6AP in binding GRIM-19 by performing competition pull-down assays was designed to examine the disruption of E6/E6AP complex by GRIM-19. The augment of E6AP ubiquitination by GRIM-19 was detected in vivo and in vitro ubiquitination assay. The effects of GRIM-19-dependent p53 accumulation on cell proliferation, cell cycle, apoptosis were explored by MTT, flow cytometry and transmission electron microscopy respectively. The tumor suppression was detected by xenograft mouse model. CONCLUSION/SIGNIFICANCE: The levels of GRIM-19 and p53 were concurrently down regulated in cervical cancers. The restoration of GRIM-19 can induce ubiquitination and degradation of E6AP, and disrupt the E6/E6AP complex through the interaction of N-terminus of GRIM-19 with both E6 and E6AP, which protected p53 from degradation and promoted cell apoptosis. Tumor xenograft studies also revealed the suppression of p53 degradation in presence of GRIM-19. These data suggest that GRIM-19 can block E6/E6AP complex; and synergistically suppress cervical tumor growth with p53

    137

    No full text

    Critical Role for Transcription Factor C/EBP-Ξ² in Regulating the Expression of Death-Associated Protein Kinase 1β–Ώ †

    No full text
    Transcription factor C/EBP-Ξ² regulates a number of physiological responses. During an investigation of the growth-suppressive effects of interferons (IFNs), we noticed that cebpbβˆ’/βˆ’ cells fail to undergo apoptosis upon gamma IFN (IFN-Ξ³) treatment, compared to wild-type controls. To examine the basis for this response, we have performed gene expression profiling of isogenic wild-type and cebpbβˆ’/βˆ’ bone marrow macrophages and identified a number of IFN-Ξ³-regulated genes that are dependent on C/EBP-Ξ² for their expression. These genes are distinct from those regulated by the JAK-STAT pathways. Genes identified in this screen appear to participate in various cellular pathways. Thus, we identify a new pathway through which the IFNs exert their effects on cellular genes through C/EBP-Ξ². One of these genes is death-associated protein kinase 1 (dapk1). DAPK1 is critical for regulating the cell cycle, apoptosis, and metastasis. Using site-directed mutagenesis, RNA interference, and chromatin immunoprecipitation assays, we show that C/EBP-Ξ² binds to the promoter of dapk1 and is required for the regulation of dapk1. Both mouse dapk1 and human dapk1 exhibited similar dependences on C/EBP-Ξ² for their expression. The expression of the other members of the DAPK family occurred independently of C/EBP-Ξ². Members of the C/EBP family of transcription factors other than C/EBP-Ξ² did not significantly affect dapk1 expression. We identified two elements in this promoter that respond to C/EBP-Ξ². One of these is a consensus C/EBP-Ξ²-binding site that constitutively binds to C/EBP-Ξ². The other element exhibits homology to the cyclic AMP response element/activating transcription factor binding sites. C/EBP-Ξ² binds to this site in an IFN-Ξ³-dependent manner. Inhibition of ERK1/2 or mutation of an ERK1/2 site in the C/EBP-Ξ² protein suppressed the IFN-Ξ³-induced response of this promoter. Together, our data show a critical role for C/EBP-Ξ² in a novel IFN-induced cell growth-suppressive pathway via DAPK1

    Structural determination of Rickettsia lipid A without chemical extraction confirms shorter acyl chains in later-evolving spotted fever group pathogens

    No full text
    ABSTRACTRickettsiae are Gram-negative obligate intracellular parasites of numerous eukaryotes. Human pathogens of the transitional group (TRG), typhus group (TG), and spotted fever group (SFG) rickettsiae infect blood-feeding arthropods, have dissimilar clinical manifestations, and possess unique genomic and morphological attributes. Lacking glycolysis, rickettsiae pilfer numerous metabolites from the host cytosol to synthesize peptidoglycan and lipopolysaccharide (LPS). For LPS, O-antigen immunogenicity varies between SFG and TG pathogens; however, lipid A proinflammatory potential is unknown. We previously demonstrated that Rickettsia akari (TRG), Rickettsia typhi (TG), and Rickettsia montanensis (SFG) produce lipid A with long 2β€² secondary acyl chains (C16 or C18) compared to short 2β€² secondary acyl chains (C12) in Rickettsia rickettsii (SFG) lipid A. To further probe this structural heterogeneity and estimate a time point when shorter 2β€² secondary acyl chains originated, we generated lipid A structures for two additional SFG rickettsiae (Rickettsia rhipicephali and Rickettsia parkeri) utilizing fast lipid analysis technique adopted for use with tandem mass spectrometry (FLATn). FLATn allowed analysis of lipid A structure directly from host cell-purified bacteria, providing a substantial improvement over lipid A chemical extraction. FLATn-derived structures indicate SFG rickettsiae diverging after R. rhipicephali evolved shorter 2β€² secondary acyl chains. While 2β€² secondary acyl chain lengths do not distinguish Rickettsia pathogens from non-pathogens, in silico analyses of Rickettsia LpxL late acyltransferases revealed discrete active sites and hydrocarbon rulers for long versus short 2β€² secondary acyl chain addition. Our collective data warrant determining Rickettsia lipid A inflammatory potential and how structural heterogeneity impacts lipid A-host receptor interactions.IMPORTANCEDeforestation, urbanization, and homelessness lead to spikes in Rickettsioses. Vector-borne human pathogens of transitional group (TRG), typhus group (TG), and spotted fever group (SFG) rickettsiae differ by clinical manifestations, immunopathology, genome composition, and morphology. We previously showed that lipid A (or endotoxin), the membrane anchor of Gram-negative bacterial lipopolysaccharide (LPS), structurally differs in Rickettsia rickettsii (later-evolving SFG) relative to Rickettsia montanensis (basal SFG), Rickettsia typhi (TG), and Rickettsia akari (TRG). As lipid A structure influences recognition potential in vertebrate LPS sensors, further assessment of Rickettsia lipid A structural heterogeneity is needed. Here, we sidestepped the difficulty of ex vivo lipid A chemical extraction by utilizing fast lipid analysis technique adopted for use with tandem mass spectrometry, a new procedure for generating lipid A structures directly from host cell-purified bacteria. These data confirm that later-evolving SFG pathogens synthesize structurally distinct lipid A. Our findings impact interpreting immune responses to different Rickettsia pathogens and utilizing lipid A adjuvant or anti-inflammatory properties in vaccinology

    A mouse model of human TLR4 D299G/T399I SNPs reveals mechanisms of altered LPS and pathogen responses

    Get PDF
    Two cosegregating single-nucleotide polymorphisms (SNPs) in human TLR4, an A896G transition at SNP rs4986790 (D299G) and a C1196T transition at SNP rs4986791 (T399I), have been associated with LPS hyporesponsiveness and differential susceptibility to many infectious or inflammatory diseases. However, many studies failed to confirm these associations, and transfection experiments resulted in conflicting conclusions about the impact of these SNPs on TLR4 signaling. Using advanced protein modeling from crystallographic data of human and murine TLR4, we identified homologous substitutions of these SNPs in murine Tlr4, engineered a knock-in strain expressing the D298G and N397I TLR4 SNPs homozygously, and characterized in vivo and in vitro responses to TLR4 ligands and infections in which TLR4 is implicated. Our data provide new insights into cellular and molecular mechanisms by which these SNPs decrease the TLR4 signaling efficiency and offer an experimental approach to confirm or refute human data possibly confounded by variables unrelated to the direct effects of the SNPs on TLR4 functionality

    Down-Regulation of GRIM-19 Expression Is Associated With Hyperactivation of STAT3-Induced Gene Expression and Tumor Growth in Human Cervical Cancers

    No full text
    Cervical cancer is the most common malignant disease responsible for the deaths of a large number of women in the developing world. Although certain strains of human papillomavirus (HPV) have been identified as the cause of this disease, events that lead to formation of malignant tumors are not fully clear. STAT3 is a major oncogenic transcription factor involved in the development and progression of a number of human tumors. However, the mechanisms that result in loss of control over STAT3 activity are not understood. Gene associated with Retinoid-Interferon-induced Mortality-19 (GRIM-19) is a tumor-suppressive protein identified using a genetic technique in the interferon/retinoid-induced cell death pathway. Here, we show that reduction in GRIM-19 protein levels occur in a number of primary human cervical cancers. Consequently, these tumors tend to express a high basal level of STAT3 and its downstream target genes. More importantly, using a surrogate model, we show that restoration of GRIM-19 levels reestablishes the control over STAT3-dependent gene expression and tumor growth in vivo. GRIM-19 suppressed the expression of tumor invasion- and angiogenesis-associated factors to limit tumor growth. This study identifies another major novel molecular pathway inactivated during the development of human cervical cancer
    corecore