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ARTICLE

A mouse model of human TLR4 D299G/T399I SNPs
reveals mechanisms of altered LPS and pathogen
responses
Katharina Richard1*, Kurt H. Piepenbrink2*, Kari Ann Shirey1*, Archana Gopalakrishnan1, Shreeram Nallar1, Daniel J. Prantner1,
Darren J. Perkins1, Wendy Lai1, Alexandra Vlk1, Vladimir Y. Toshchakov1, Chiguang Feng3, Rachel Fanaroff4, Andrei E. Medvedev5,
Jorge C.G. Blanco6, and Stefanie N. Vogel1

Two cosegregating single-nucleotide polymorphisms (SNPs) in human TLR4, an A896G transition at SNP rs4986790 (D299G)
and a C1196T transition at SNP rs4986791 (T399I), have been associated with LPS hyporesponsiveness and differential
susceptibility to many infectious or inflammatory diseases. However, many studies failed to confirm these associations, and
transfection experiments resulted in conflicting conclusions about the impact of these SNPs on TLR4 signaling. Using
advanced protein modeling from crystallographic data of human and murine TLR4, we identified homologous substitutions of
these SNPs in murine Tlr4, engineered a knock-in strain expressing the D298G and N397I TLR4 SNPs homozygously, and
characterized in vivo and in vitro responses to TLR4 ligands and infections in which TLR4 is implicated. Our data provide new
insights into cellular and molecular mechanisms by which these SNPs decrease the TLR4 signaling efficiency and offer an
experimental approach to confirm or refute human data possibly confounded by variables unrelated to the direct effects of
the SNPs on TLR4 functionality.

Introduction
Initiation of host-mediated inflammation by Gram-negative LPS is
triggered by TLR4 through a relatively complex process that
transmits signaling across the membrane following oligomeriza-
tion of the TLR4 protein upon LPS binding. TLR4 does not bind
LPS directly. A serum protein, LPS-binding protein, extracts an
LPS monomer from micelles and transfers it to soluble or cell-
associated CD14. In turn, CD14 transfers the LPS monomer to
MD-2, a TLR4 coreceptor present in soluble form or preassociated
with TLR4 on the cell surface. Interaction of LPS with the TLR4/
MD-2 complex results in formation of TLR4/MD-2 hetero-
tetramers (Latty et al., 2018), creating an intracellular “TLR4 sig-
naling platform” that facilitates recruitment of adapters, MyD88
or TIR domain–containing adaptor-inducing IFN-β (TRIF), leading
to MyD88- or TRIF-dependent signaling pathways, respectively
(reviewed in Fitzgerald and Kagan, 2020). Other structurally
unrelated, MD-2–dependent TLR4 agonists have been described,
including respiratory syncytial virus (RSV) fusion protein (Kurt-

Jones et al., 2000), Chlamydia Hsp 60 (Bulut et al., 2002), and
host-derived high-mobility group box 1 (HMGB1; Yang et al.,
2013), among others.

Two nonsynonymous, cosegregating single-nucleotide poly-
morphisms (SNPs) in human TLR4, an A896G transition at SNP
rs4986790 (D299G) and a C1196T transition at SNP rs4986791
(T399I), have been associated with LPS hyporesponsiveness, as
well as differential susceptibility to many infectious and non-
infectious diseases (reviewed in Schröder and Schumann, 2005;
Ferwerda et al., 2007; Medvedev, 2013; Mukherjee et al., 2019).
Arbour et al. (2000) first demonstrated that inheritance of these
relatively common SNPs resulted in hyporesponsiveness to in-
haled LPS and decreased LPS sensitivity of airway epithelial
cells. Michel et al. (2003) reported that these TLR4 SNPs were
associated with systemic inflammatory hyporesponsiveness to
inhaled LPS. However, the mechanistic basis for altered LPS
responsiveness in cells expressing these SNPs has been highly
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controversial. In several studies, ectopic expression of the TLR4
SNPs was associated with significantly decreased surface ex-
pression compared with WT TLR4, suggesting that reduced
surface TLR4 expression accounted for the observed LPS hypo-
responsiveness in epithelial cell cultures (Arbour et al., 2000;
Tulic et al., 2007). While Tulic et al. (2007) also observed re-
duced LPS-induced cytokine responses in peripheral blood
mononuclear cells from individuals with these SNPs, Ferwerda
et al. (2007) reported an increase in TNF-α in LPS-stimulated
whole blood derived from D299G-expressing African individuals
but no altered induction of TNF-α in LPS-stimulated blood
samples from a Dutch population expressing both D299G and
T399I SNPs. Transgenic mice expressing varying copy numbers
of genes encoding human WT or TLR4 SNP variants exhibited
LPS responses that were more dependent upon the relative ex-
tent of TLR4 surface expression rather than expression of the
TLR4 SNPs per se (Hajjar et al., 2017). Yet, under conditions of
apparently equivalent levels of ectopic expression of WT and
mutant TLR4, diminished signaling and recruitment of intra-
cellular adaptor molecules in response to LPS and other TLR4
agonists was reported (Rallabhandi et al., 2006; Figueroa et al.,
2012). Prohinar et al. (2010) reported that the affinity of inter-
action of complexes composed of MD-2 and the TLR4 ectodo-
main with LPS-CD14 or of TLR4 ectodomain with LPS-MD-2 was
not detectably affected by the presence of the TLR4 SNPs, yet
accumulation of both extracellular TLR4 ectodomain and full-
length surface TLR4 was significantly reduced in the presence of
the human TLR4 SNPs.

Since all genetic analyses of inheritance of these TLR4 SNPs
with human disease states are correlative and have the potential
to be significantly impacted by genetic differences not directly
related to TLR4 haplotype, we undertook studies to model the
homologous human TLR4 SNPs in murine TLR4, based on
published crystallographic analyses. Using a CRISPR/Cas9 ap-
proach, mice were derived onto a C57BL/6J background that
expresses the Tlr4 SNPs homozygously to permit a rigorous and
unambiguous evaluation of LPS sensitivity and susceptibility to
infectious insults in mice and their macrophages. We report
herein that C57BL/6J mice harboring nucleotide substitutions in
the Tlr4 locus that encode D298G/N397I (TLR4-SNP mice) and
their macrophages are LPS hyporesponsive, in contrast to LPS-
unresponsive TLR4−/− mice, and exhibit increased susceptibility
to Gram-negative infection and RSV but increased resistance to
influenza, infections previously associated with TLR4. Our re-
sults further provide novel insights into underlying signaling
mechanisms that dictate the observed altered responses of
TLR4-SNP mice.

Results
Based on the crystal structures of WT and SNP-expressing hu-
man TLR4 proteins (Kim et al., 2007; Ohto et al., 2012), we
modeled murine TLR4 with the homologous SNPs D298G and
N397I (Fig. 1 A). Neither residue is at the TLR dimerization in-
terface or contacts MD-2 or LPS in the cocrystal structures. In
the five available murine TLR4 structures, the WT D298 side
chain varies in its orientation, while the N397 side chain is

invariant (Kim et al., 2007; Ohto et al., 2012; Wang et al., 2016).
The leucine-rich repeats 10–13, which include D299 (human)/
D298 (mouse), are close enough to LPS and MD-2 in the human
TLR4 crystal structure (∼10 Å) that one might predict down-
stream effects on TLR4’s affinity for LPS or other ligands;
however, no such differences were observed in affinity for the
human proteins (Prohinar et al., 2010). As TLR activation is
dependent upon ligand binding–induced dimerization, small
alterations in binding kinetics could have profound downstream
effects, as has been reported for T cell receptor signaling
(Gagnon et al., 2006).

Alignment of the human and murine crystal structures re-
vealed that the loop containing T399 (human) and N397 (mouse)
is highly conserved (Fig. S1 A), and ourmodel predicts that, as in
the human mutation, the murine N397I is unlikely to alter the
overall fold, as the native asparagine side chainmakes no contact
with other residues in the protein (Fig. S1 A). However, like the
human T→I mutation, the electrostatic alteration caused by re-
placing a polar side chain with an aliphatic one may have con-
sequences for TLR4 association with other membrane proteins
such as CD14 (Fergestad et al., 2001; Zanoni et al., 2011). The
structural effects of the murine D298G mutation are somewhat
more difficult to predict, because this region is less well con-
served between the human and murine proteins (Fig. S1 B). In
the human D299G mutant, this region is substantially re-
arranged; both the loop containing 299 and an adjacent loop
(containing D325) adopt altered conformations (Fig. S1 C), which
Ohto et al. (2012) attribute, in part, to the loss of a hydrogen
bond between the D299 side chain and the amide nitrogen of
residue 302. Based on our modeling results, we suggest in-
stead that the loss of electrostatic repulsion between the hu-
man D299 and D325 side chains allows for the conformational
shift that moves the D325 side chain 5 Å closer to the 299
backbone (Fig. S1 C). The murine D298 and D323 side chains
are conformationally heterogeneous in the available crystal
structures (Kim et al., 2007; Ohto et al., 2012; Wang et al.,
2016), but the distance between the aspartate side chains (8 Å)
is approximately conserved in all of the bound structures and
only slightly reduced in the unbound structure (Fig. S1 D;
compare taupe [unbound murine TLR4] to green, blue, mauve,
and orange [bound]). Our model (Fig. 1 A, left panel) predicts a
rearrangement similar to that in human TLR4 but is somewhat
less extended than the human equivalent because of the shorter
loop length in the murine protein, with D323 moving 3 Å closer
to the 298 backbone (Fig. S1 E). As in human TLR4, our model
does not predict any structural changes to the regions of mu-
rine TLR4 responsible for dimerization or at the MD-2–LPS
interface.

Based on this structural model for murine TLR4, TLR4-SNP
mice homozygously expressing TLR4 with cosegregating D298G
and N397I mutations were engineered onto a C57BL/6J back-
ground (see Materials and methods; Fig. 1 B) and compared
in vivo and in vitro for their responses to LPS and infectious
agents previously associated with TLR4 signaling. The following
results provide the first direct evidence in a mouse model for the
significant impact of these two TLR4 SNPs in response to LPS
and in three models of infection.
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TLR4-SNP mice exhibit hyporesponsiveness to LPS in vivo
Arbour et al. (2000) originally reported an association of the
inheritance of the human TLR4 SNPs D299G and T399I with
hyporesponsiveness to inhaled LPS. To assess the responses of
WT and TLR4-SNP (D298G and N397I) mice to LPS in the lung,
we administered saline or highly purified, protein-free Esche-
richia coli LPS (5 µg/mouse) intratracheally (i.t.) and assessed the
lung inflammatory response 18 h later (Feng et al., 2013). Based
on the combined pathology scores from three separate experi-
ments, lung sections of saline-treated WT and TLR4-SNP mice
revealed no significant inflammation (data not shown; pathology
scores of 0 ± 0 and 0.17 ± 0.11, respectively; n = 6mice/strain). As
expected, lung sections from LPS-treated WT mice show sig-
nificantly greater inflammation, composed primarily of neu-
trophils and lymphocytes surrounding the airways and in the
alveolar spaces (Fig. 2 A, left; and Fig. S2 A). In contrast, lungs of
LPS-treated TLR4-SNP mice (Fig. 2 A, right) showed minimal
inflammation (WT vs. TLR4-SNP pathology scores: 1.41 ± 0.35 vs.
0.34 ± 0.15 [n = 16 mice/strain]; P = 0.0123). Consistent with the
differential inflammatory response of WT and TLR4-SNP mice
to i.t. LPS, levels of the inflammatory cytokines TNF-α and IL-
1β (Fig. 2 B), as well as Tnf, Il1b, and Cxcl10 mRNA (Fig. S2 B),
were significantly lower in lung homogenates of LPS-treated
TLR4-SNP mice compared with WT controls at 18 h after
treatment.

WT and TLR4-SNP mice were also treated i.p. with doses of
LPS that induce lethality in WT mice. In response to LPS (600
µg/mouse; Fig. 2 C, left), WTmice exhibited significantly greater
symptoms than TLR4-SNP mice. No significant differences be-
tween male (M) and female (F) mice were observed within each
strain. Further, when mice were challenged i.p. with LPS
(30 mg/kg), to adjust for minor dose differences due to differing
weights of each mouse, we observed that a much higher pro-
portion of the WT mice (83%) succumbed to LPS than the TLR4-

SNP mice (33%; Fig. 2 C, right). In contrast, TLR4−/− mice chal-
lenged with this same dose of LPS showed no symptoms of
endotoxicity or lethality (data not shown). When WT and TLR4-
SNP mice were challenged i.p. with a nonlethal dose of LPS (25
µg/mouse), levels of LPS-induced TNF-α protein (encoded by
Tnf, an MyD88-dependent gene) and IFN-β protein (encoded by
Ifnb1, a TRIF-dependent gene) in sera collected 2 h after LPS
administration were significantly greater in WT mice (Fig. 2 D).
These data were confirmed at the level of Il1b, Ifnb1, Il12b, and Il6
mRNA (encoding IL-1β, IFN-β, IL-12 p40, and IL-6, respectively)
in the liver (Fig. S2 C). These results indicate that expression of
the murine TLR4 D298G and N397I SNPs render mice LPS
hyporesponsive.

TLR4-SNP macrophages exhibit hyporesponsiveness to LPS
in vitro
To compare the signaling capacities in response to LPS,
thioglycollate-elicited WT and TLR4-SNP macrophages were
treated with LPS and whole-cell lysates subjected to Western
analysis for signaling intermediates over a 2-h period (Fig. 3,
A–D; densitometric analysis is shown below each blot). Acti-
vation of NF-κB, as evidenced by rapid degradation of IκBα, and
phosphorylation of the p65 subunit (Fig. 3 A) were observed in
WT macrophages but were markedly less robust in TLR4-SNP
macrophages. This was also observed for activation of both
p-ERK 1,2 and p-JNK (Fig. 3 B). LPS-induced TRIF-dependent
activation of TBK1 and IRF-3 was similarly reduced in TLR4-
SNP macrophages (Fig. 3, C and D). Thus, TLR4-mediated
activation of both MyD88 and TRIF signaling pathways were
compromised by the presence of the D298G and N397I SNPs.
Consistent with these findings, induction of MyD88-dependent
gene expression (Il1b and Tnf mRNA) and TRIF-dependent ex-
pression of Ifnb1mRNA was significantly lower in LPS-stimulated
TLR4-SNP macrophages (Fig. 3 E), and these findings were

Figure 1. Homology model of murine TLR4 D298G/N397I. (A) Superimposed models of murine WT vs. TLR4 D298G N397I. The x-ray crystal structure of
murine TLR4 (green) with MD-2 (blue) is superimposed onto a model of the double mutant (pink). Inset panels show details around the two SNP sites, D298G
(left) and N397I (right). (B) Alignment and DNA sequences of WT and homozygous mutant mice expressing both the D298G and N397I TLR4 SNPs (TLR4-SNP
mice).
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confirmed in bone marrow–derived macrophages (data not
shown). There was no significant difference in WT vs. TLR4-
SNP macrophages stimulated with either TLR2 or TLR3 ago-
nists (Fig. S3 A).

TLR4-SNP macrophages exhibit reduced TLR4 surface
expression in vitro
Several studies have suggested that surface expression of human
TLR4 expressing the D299G and T399I SNPs was lower than in
WT epithelial cells (Arbour et al., 2000; Tulic et al., 2007), al-
though this finding has been controversial (Rallabhandi et al.,
2006; Figueroa et al., 2012). Fig. 3 F (left) is a representative flow
cytometry histogram showing that cell surface staining of mu-
rine TLR4 with mAb Sa15-21, which binds to the N-terminal half
of murine TLR4 (Akashi-Takamura et al., 2006) independently
of MD-2 interaction (Visintin et al., 2006), was greater in pri-
mary WT macrophages than in TLR4-SNP macrophages. Stain-
ing of TLR4−/− macrophages was superimposable on that of the
isotype control antibody. Based on five separate experiments
(Fig. 3 G), the mean fluorescence intensity of TLR4 stained with
Sa15-21 on WT macrophages was more than twice that of the
TLR4-SNP macrophages. These findings were confirmed using a
second mAb, UT-12 (Ohta et al., 2006; Fig. 3 F, right), that binds
to transfectants expressing the TLR4/MD-2 complex, but not to

cells expressing TLR4 or MD-2 alone (Bahrun et al., 2007).
Lastly, Western analysis of whole-cell lysates from pools of WT,
TLR4-SNP, and TLR4−/− macrophages was performed using a
rabbit anti-recombinant mouse TLR4 mAb. Consistent with the
finding by FACS analyses that TLR4-SNP macrophages ex-
pressed decreased surface TLR4 expression, levels of total TLR4
protein were also reduced in TLR4-SNP macrophage lysates
compared with WT and were undetectable in the TLR4−/−

macrophage lysates. In contrast, levels of TLR2 in these same
preparations were equivalent (Fig. 3 H; densitometric analysis is
provided below the blot). Despite the apparent difference in
TLR4 expression on WT vs. TLR4-SNP macrophages, steady-
state levels of Tlr4 mRNA were not significantly different (Fig.
S3, B and C) when measured in either macrophage or liver
mRNA using distinct murine Tlr4 primer sets to ensure complete
coverage of the expressed mRNA.

Given the profound effect of the TLR4 SNPs on activation of
the TRIF-dependent pathway (Fig. 3, C–E) and the fact that in-
ternalization of TLR4/MD-2/CD14 is required for TRIF activation
(Kagan et al., 2008), macrophages were treated with LPS and
loss of surface TLR4 quantified over 90 min (Kagan et al., 2008;
Richard et al., 2019). While basal levels of macrophage WT TLR4
were approximately twice that of the TLR4-SNP macrophages
(Fig. 3, F–H), WT and TLR4-SNP macrophages responded to LPS

Figure 2. TLR4-SNPmice exhibit LPS hyporesponsiveness in vivo. (A) TLR4-SNPmice exhibit reduced lung pathology in response to i.t. LPS (5 µg/mouse).
Representative H&E-stained lung sections from WT vs. TLR4-SNP mice 18 h after LPS treatment (n = 16 LPS-treated/strain in three separate experiments;
100× magnification, scale bars = 500 µm). In this and all subsequent figures, age- and sex-matched WT (C57BL/6J) mice were purchased from the Jackson
Laboratory; TLR4-SNP mice were engineered onto a C57BL/6J background, and TLR4−/− mice were backcrossed onto a C57BL/6J background for >12 gen-
erations (see Materials and methods). (B) TNF-α and IL-1β protein levels in lung homogenates of mice treated as in A. Each point represents an individual
mouse; each column represents the mean ± SEM. Data were analyzed by one-way ANOVA with Tukey’s post hoc test. For LPS-treated (n = 16/strain, combined
data from three independent experiments) WT vs. TLR4-SNP mice, TNF-α, P = 0.0298; IL-1β, P = 0.0015. (C) TLR4-SNP mice exhibit reduced symptoms in
response to lethal i.p. LPS. Left: Age-matched male (M) and female (F) WT and TLR4-SNP mice (n = 5 per sex/strain) were injected with LPS (600 µg/mouse
i.p.) and cumulative symptom scores recorded at the indicated time points (mean ± SEM). Data are representative of three separate experiments. Differences
between males and females of the same strain were not significant. Comparison of WT vs. TLR4-SNP mice revealed the following significant differences by sex
as analyzed pairwise by nonparametric Mann–Whitney U test: at 30 h, male, #, P = 0.0079; female, not significant (N.S.); at 54 h, male, **, P = 0.0159; female,
***, P = 0.0286; at 78 h, male, *, P = 0.0079; female, not applicable (single survivor in the WT group). Right: WT and TLR4-SNPmice were injected i.p. with LPS
(30 mg/kg) and survival monitored. This experiment is representative of three independent experiments; n = 10 mice (5 males, 5 females)/strain; P = 0.0074
(log-rank Mantel-Cox test). (D) Serum TNF-α and IFN-β protein 2 h after nonlethal LPS administration (25 µg/mouse i.p.). Each point represents an individual
mouse: WT saline (n = 8); TLR4-SNP saline (n = 7), WT LPS (n = 18), and TLR4-SNP LPS (n = 17; derived from three separate experiments). Each column
represents the mean ± SEM. Data were analyzed by one-way ANOVA with Tukey’s post hoc test. For LPS-treated WT vs. TLR4-SNP mice, TNF-α, P < 0.0001;
IFN-β, P < 0.0001.
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Figure 3. TLR4-SNP macrophages are hyporesponsive to LPS in vitro. (A–D) Attenuated LPS-dependent signal transduction in TLR4-SNP mice. WT and
TLR4-SNP thioglycollate-elicited macrophages were stimulated with LPS (10 ng/ml in A–C or 100 ng/ml in D) for the indicated times and whole-cell lysates
probed by Western blot using antibodies directed against the indicated proteins. Densitometric analysis is shown below each lane. Images and normalized
densitometric measurements are representative of n > 4 independent experiments with similar outcomes. (E) Cytokine gene expression of Il1b, Tnf, and Ifnb1
relative to expression of the housekeeping gene Hprt in macrophages treated with medium only or LPS (1 or 10 ng/ml). Each point represents the average
responses of pooled macrophages from six independent experiments. Each column represents the mean ± SEM. Data were analyzed by two-way ANOVA with
Tukey’s post hoc test; P values were adjusted for multiple comparison. Il1b: 1 ng/ml LPS, ***, P < 0.0001; 10 ng/ml LPS, *, P = 0.0204. Tnf: 1 ng/ml LPS, ***, P <

Richard et al. Journal of Experimental Medicine 5 of 18

Novel mechanisms of sensitivity to LPS/infection https://doi.org/10.1084/jem.20200675

https://doi.org/10.1084/jem.20200675


with comparable rates of internalization of the TLR4/MD-2/
CD14 receptor complex, findings confirmed in five separate
experiments (Fig. 3, I and J).

TLR4-SNPmacrophages exhibit reduced LPS sensitivity for cell
metabolic regulation
Previous studies have shown that LPS stimulation of macro-
phages activates glycolysis in order to support M1 (classically
activated) macrophage activation (Mills et al., 2017; Hughes and
O’Neill, 2018). Standard glycolytic stress tests were performed to
compare WT and TLR4-SNP macrophage responses (Fig. 4 A),
and glycolytic parameters (e.g., rates of glycolysis, glycolytic
capacity, glycolytic reserve, and nonglycolytic acidification)
were calculated (see diagram in Fig. S4 A). TLR4−/− macrophages
were included as negative controls and did not respond to LPS
for any of the measurements. Within 24 h of LPS treatment, WT
macrophages consistently exhibited a modest increase in gly-
colysis (Fig. 4, A and B) and glycolytic capacity (Fig. S4 B) in
response to both low (1 ng/ml) and high (100 ng/ml) LPS con-
centrations, whereas the glycolytic reserve and nonglycolytic
acidification were essentially unchanged (data not shown).
Compared with WT macrophages, TLR4-SNP macrophages ex-
hibited reduced glycolysis after treatment with 1 ng/ml LPS,
which was overcome at the higher LPS dose (Fig. 4, A and B).
Reduced glycolytic capacity after low-dose LPS stimulation of
the TLR4-SNP macrophages was also observed, although this
trend did not reach statistical significance (Fig. S4 B). To confirm
these data, lactate, a product of glycolysis, was measured in WT
and TLR4-SNP macrophage cultures (Fig. 4 C). LPS-stimulated
TLR4-SNP macrophages produced significantly less lactate than
WT macrophages at 1, 10, and 100 ng/ml LPS.

Mitochondrial stress tests were also performed with mod-
ifications described previously (Bordt et al. 2017; Fig. 4 D), and
measurements of oxidative phosphorylation (e.g., rates of basal
respiration, ATP production, proton leak, mitochondrial cou-
pling efficiency, maximal respiration, spare respiratory capacity
[SRC], and nonmitochondrial oxygen consumption) were cal-
culated (see diagram in Fig. S4 C). Treatment of WT macro-
phages with LPS for 24 h resulted in modest but consistent
increases in the basal respiration rate (Fig. 4, D and E) and, to a
lesser extent, ATP production rate (Fig. S4 D). Basal respiration
and ATP synthesis rates of TLR4-SNP macrophages stimulated
with 1 ng/ml LPS were minimally increased over the basal res-
piration rates of all media-treated control cells or LPS-treated
TLR4−/− macrophages but were increased to the level of WT

macrophages upon treatment with 100 ng/ml LPS (Fig. 4, D and
E; and Fig. S4 D). WT macrophages also exhibited an approxi-
mately threefold increase in proton leak in response to low- or
high-dose LPS (Fig. S4 E) that resulted in significantly decreased
mitochondrial coupling efficiency (Fig. S4 F). Again, TLR4-SNP
macrophages exhibited an intermediate response to low-dose
LPS that was not statistically different from LPS-treated
TLR4−/− macrophages, but this deficit was overcome at the
higher LPS dose (Fig. S4, E and F). SRC (approximately three-
fold higher than basal respiration in the absence of LPS) was
decreased in WT macrophages at both the doses of LPS and
completely eliminated in approximately half of the macrophage
pools tested (Fig. 4 F; the horizontal line on the graph at 100%
represents the basal respiration rate), indicating that LPS-
stimulated WT macrophages are using oxidative phosphoryla-
tion at maximal levels. TLR4-SNP macrophages still exhibited
the capacity to double their respiratory rate after low-dose LPS
treatment and only exhibited significantly reduced SRC at the
high LPS dose. Maximal respiration and nonmitochondrial
respiration rates were not affected by LPS treatment (data not
shown). Together, these data reveal that while TLR4−/− mac-
rophages were completely refractory to LPS stimulation, TLR4-
SNP macrophages exhibited partial responses to low-dose LPS
treatment and near-WT responses to high-dose LPS treatment
for all metabolic measurements that were LPS responsive.

TLR4-SNP macrophages exhibit reduced responsiveness to
weak TLR4 agonists and increased sensitivity to TLR4
antagonists
When stimulated by weak TLR4 agonists, the differential re-
sponses of human TLR4 D299G/T399I-expressing stable trans-
fectants (Yamakawa et al., 2013) and primary human adherent
white blood cells (Rallabhandi et al., 2008) were greater than
observed when LPS was used as the stimulus. This was attrib-
uted to a SNP-induced conformational change that impaired
TLR4 dimerization in transfectants (Yamakawa et al., 2013).
Stimulation of murineWT and TLR4-SNPmacrophages with the
weak TLR4 agonist synthetic monophosphoryl lipid A (sMPL)
also resulted in differences in gene induction between the two
strains that were more disparate than seen in response to LPS
stimulation (Fig. 5 A; plotted on a log10 scale to facilitate a direct
comparison of the relative differences in LPS- vs. sMPL-
stimulated gene expression). Since TLR4 expression levels
were significantly lower in the TLR4-SNP macrophages (Fig. 3,
F and G), we hypothesized that Eritoran, a synthetic TLR4

0.0001; 10 ng/ml LPS, *, P = 0.0104. Ifnb1: 1 ng/ml LPS, ***, P < 0.0001; 10 ng/ml LPS, ***, P < 0.0001. (F) Flow cytometric analysis of surface TLR4 on WT,
TLR4-SNP, and TLR4−/−macrophages. The histograms on the left show a representative experiment (n = 5) illustrating the fluorescent intensity of WT or TLR4-
SNP macrophages stained with anti-mouse mAb Sa15-21, and the histograms on the right show a representative experiment (n = 3) for WT or TLR4-SNP
macrophages stained with mAb UT-12. TLR4−/− macrophages were included as a negative control. (G) Expression of surface TLR4 (median fluorescence
intensity [MFI]) in WT vs. TLR4-SNP macrophages (mean ± SEM) in five separate experiments using mAb Sa15-21. Data were analyzed by paired Student’s
t test. ***, P = 0.0008. (H) Western analysis of WT, TLR4-SNP, and TLR4−/− macrophage whole-cell lysates for TLR4 and TLR2 expression. Each lane rep-
resents a separate macrophage pool. Representative of two independent experiments. Densitometric ratios are shown below the blot. (I) LPS-induced in-
ternalization of TLR4 in WT vs. TLR4-SNP macrophages. This graph shows the results of a single representative experiment. Rate of internalization was
calculated by linear regression (WT, slope −28%/h, R2 = 0.9938; TLR4-SNP, slope = −30%/h relative to its own expression level in absence of LPS, R2 = 0.9820);
WT vs. TLR4-SNP, not significant (N.S.). (J) Rates of TLR4 internalization were calculated from five independent experiments (mean ± SEM) performed as
shown in I. Data were analyzed by paired Student’s t test. WT vs. TLR4-SNP, N.S.

Richard et al. Journal of Experimental Medicine 6 of 18

Novel mechanisms of sensitivity to LPS/infection https://doi.org/10.1084/jem.20200675

https://doi.org/10.1084/jem.20200675


Figure 4. TLR4-SNPmacrophages exhibit reducedmetabolic activation in response to LPS. (A) Glycolytic stress test performed on thioglycollate-elicited
macrophages derived from WT and TLR4-SNP mice. Results represent the mean ± SEM of a representative experiment shown as a Seahorse wave plot.
(B) Glycolysis measurements ([ECARwith 10mM glucose] − [ECAR after 1-h glucose starvation]) from glycolytic stress tests were performed as in A, with some
experiments including TLR4−/− macrophages as an additional negative control. Each data point shows the average response of two to five technical replicates
of a separate pool of thioglycollate-elicited macrophages from a total of nine independent experiments (at 1 ng/ml LPS: WT, n = 8; TLR4-SNP, n = 5; TLR4−/−,
n = 4; at 100 ng/ml LPS: WT, n = 9; TLR4-SNP, n = 6; TLR4−/−, n = 7; columns represent mean ± SEM). Data were analyzed by two-way ANOVA (α = 0.10), with
Sidak’s multiple comparison post-tests to compare WT vs. TLR4-SNP responses: untreated, not significant (N.S.); 1 ng/ml LPS, P = 0.067; 100 ng/ml LPS, N.S.;
WT vs. TLR4−/− responses: untreated, N.S.; 1 ng/ml LPS, P = 0.0003; 100 ng/ml LPS, P < 0.0001; TLR4-SNP vs. TLR4−/− responses: 100 ng/ml LPS, P = 0.0086
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antagonist that competitively inhibits binding of LPS to MD-2,
and thereby inhibits TLR4 dimerization (Kim et al., 2007),
would more readily inhibit LPS-induced gene expression
in TLR4-SNP macrophages. The dose of Eritoran required
to inhibit LPS-induced Il1b and Il12b mRNA expression by
∼50% (ID50) was significantly lower in TLR4-SNP macro-
phages (Fig. 5 B). Finally, Toshchakov et al. (2011) dem-
onstrated that 4BB, a cell-permeating inhibitory peptide
based on the sequence of the BB loop of TLR4, disrupted
TLR4 dimerization in response to LPS. Like Eritoran, the
4BB peptide more readily inhibited LPS-induced Il1b and
Il12b gene expression in TLR4-SNP macrophages than in WT
macrophages (Fig. 5 C).

TLR4-SNP D298G/N397I mice exhibit increased sensitivity to
Gram-negative infection
C3H/HeJ mice, shown to carry a point mutation in Tlr4 that
renders them LPS unresponsive (Poltorak et al., 1998), as well as
TLR4−/−mice, exhibited increased susceptibility to Gram-negative

bacteria, including Salmonella and E. coli (O’Brien et al., 1980;
Cross et al., 1989; Roger et al., 2009). Lorenz et al. (2002b) re-
ported that the allele encoding TLR4 D299G was exclusively
found in patients with septic shock, and Lorenz et al. (2002b)
and Agnese et al. (2002) reported that septic shock patients
expressing both SNPs had a higher prevalence of Gram-
negative infection. More recently, Chatzi et al. (2018) re-
ported that the human TLR4 SNPs D299G/T399I were
associated with increased susceptibility to hospital-acquired
pathogens such as Pseudomonas and Klebsiella, leading to in-
creased hospital stay. To test the sensitivity of TLR4-SNP
mice to Gram-negative infection, WT and TLR4-SNP mice
were infected i.p. with Klebsiella pneumoniae (Kp) O1K2 strain
B5055 (∼1,200 CFU/mouse) and monitored daily for survival.
TLR4-SNP mice were significantly more susceptible to Kp
infection than WT mice (Fig. 6 A), supporting the hypothesis
that inheritance of the murine TLR4 D298G and N397I SNPs
similarly increased sensitivity to Gram-negative bacterial
infection. Increased susceptibility to Kp was accompanied by

(adjusted for multiple comparisons). (C) Macrophages isolated from WT and TLR4-SNP mice were stimulated for 24 h with the indicated dose of LPS
(0–100 ng/ml). Culture supernatants were assayed for the concentration of L-lactate using an enzymatic detection kit. The data represent the mean ± SD for a
representative experiment of two separate experiments. Data were analyzed by one-way ANOVA, with Tukey’s post hoc test to compare WT vs. TLR4-SNP
responses; ***, P < 0.0001 for each pair. (D)Mitochondrial stress test performed on macrophages derived fromWT and TLR4-SNP mice. Results represent the
mean ± SEM of a representative experiment shown as a Seahorse wave plot. (E) Basal respiration ([OCR before injections] − [OCR after inhibition of electron
transport with AA]). Each data point shows the average response of two to five technical replicates of a separate pool of thioglycollate-elicitedmacrophages (at
1 ng/ml LPS: WT n = 6, TLR4-SNP n = 3, TLR4−/− n = 2; at 100 ng/ml LPS: WT n = 8, TLR4-SNP n = 4, TLR4−/− n = 5; from a total of seven independent
experiments; columns represent mean ± SEM). Data were analyzed by two-way ANOVA (α = 0.10), with Sidak’s multiple comparison post-tests to compareWT
vs. TLR4-SNP responses: untreated, N.S.; 1 ng/ml LPS, *, P = 0.032; 100 ng/ml LPS, N.S.; WT vs. TLR4−/− responses: untreated, N.S.; 1 ng/ml LPS, ***, P =
0.0006; 100 ng/ml LPS, ***, P < 0.0001; TLR4-SNP vs. TLR4−/− responses at 100 ng/ml LPS, **, P = 0.0026 (adjusted for multiple comparisons). (F) Percent
SRC (100 × [(maximum OCR after uncoupling oxidative phosphorylation from the mitochondria with carbonyl cyanide 4-[trifluoromethoxy]phenylhydrazone
and providing excess pyruvate) − (OCR before injections)] / [basal respiration]) from the same experiments as in E. Data were analyzed by two-way ANOVA
(α = 0.10), with Sidak’s multiple comparison post-tests to compareWT vs. TLR4-SNP responses: untreated, N.S.; 1 ng/ml LPS, *, P = 0.021; 100 ng/ml LPS, N.S.;
WT vs. TLR4−/− responses: untreated, N.S.; 1 ng/ml LPS, ***, P < 0.0001; 100 ng/ml LPS, ***, P < 0.0001; TLR4-SNP vs. TLR4−/− responses: 100 ng/ml LPS, ***,
P < 0.0001 (adjusted for multiple comparisons). FCCP, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone.

Figure 5. TLR4-SNPmacrophages exhibit decreased responsiveness to weak TLR4 agonists and antagonists. (A)WT and TLR4-SNPmacrophages were
stimulated with LPS and sMPL at the indicated concentrations and Il1bmRNA quantified by qRT-PCR. The results represent the mean ± SEM of four separate
experiments. Data were analyzed by two-way ANOVA and Tukey’s post hoc test. WT vs. TLR4-SNP: 0.1 ng/ml LPS, **, P = 0.005; 1.0 ng/ml LPS, **, P = 0.0079;
10 ng/ml LPS, P = not significant (N.S.); 1.0 ng/ml sMPL, **, P = 0.0032; 10 ng/ml sMPL, ***, P < 0.0001. (B)WT and TLR4-SNP macrophages were pretreated
for 20 min with Eritoran (10-fold dilutions ranging from 100 pg/ml to 1 µg/ml) and then stimulated with LPS (10 ng/ml) for 2 h. The ID50 was calculated as
described in Materials and methods. Results represent the mean ± SEM of four separate experiments. LogID50 data were analyzed by a paired Student’s t test;
Il1b: *, P = 0.013; Il12b: *, P = 0.022. (C)WT and TLR4-SNP macrophages were pretreated for 30 min with 4BB peptide (dilutions ranging from 0.8 to 26 µM in
experiment 1 or from 0.08 to ∼20 µM in experiments 2 and 3) and then stimulated with LPS (10 ng/ml) for 2 h. The ID50 for each genotype was calculated as
described in Materials and methods. Results represent the mean ± SEM of three separate experiments. LogID50 data were analyzed by a paired Student’s t test;
IL1b: *, P = 0.014; Il12b: **, P = 0.008.
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a significant increase in bacterial counts in the livers and
spleens of TLR4-SNP mice 24 h after infection (Fig. S5 A).

TLR4-SNP 298G/N397I mice exhibit increased resistance to
influenza infection
We previously reported that TLR4−/− mice were highly refrac-
tory to infection by mouse-adapted influenza A/PR/8/34 (PR8)
and that therapeutic administration of Eritoran, or other TLR4-
specific antagonists, protected WT mice from lethal infection
and pathology (Shirey et al., 2013, 2016; 2020; Piao et al., 2015;
Perrin-Cocon et al., 2017). Since there are no reports that have
specifically examined the association of human TLR4 299/399
SNPs and influenza infection, we tested the hypothesis that the
murine D298G/N397I TLR4 SNPs would confer resistance to PR8
infection, similar to TLR4−/− mice or WT mice treated thera-
peutically with Eritoran (Shirey et al., 2013). WT, TLR4−/−, and
TLR4-SNP mice were infected i.n. with a 90% lethal dose (LD90)
of PR8 previously determined in WT C57BL/6J mice (Shirey
et al., 2013). Fig. 6 B shows that WT mice succumb to infec-
tion, while TLR4−/− mice are refractory to PR8 infection (P =
0.0001), as reported previously (Shirey et al., 2013). TLR4-SNP

mice were significantly more resistant to PR8-induced lethality
than WT mice (P = 0.0004) but less resistant than the TLR4−/−

mice (P = 0.019).
Additional groups of WT and TLR4-SNP mice were infected

with PR8 and euthanized on day 6 after infection, and the lungs
were removed. Part of each lung was fixed and H&E stained for
histopathology, and part was homogenized for analysis of gene
expression by quantitative RT-PCR (qRT-PCR). Lung sections
revealed extensive pathology and inflammation in PR8-infected
WT mice (Fig. 6 C, left panel; pathology scores are shown in
Fig. 6 D, open bars), whereas lung sections from PR8-infected
TLR4-SNP mice exhibited significantly less inflammatory in-
filtrates and lung damage (Fig. 6 C, right panel; pathology scores
in Fig. 6 D, closed bars). We previously reported that PR8-
infected WT mice treated with the TLR4 antagonists also ex-
hibited a significant reduction in inflammatory gene expression
(Shirey et al., 2013, 2016, 2020; Piao et al., 2015; Perrin-Cocon
et al., 2017). PR8-infected WT mice showed significantly greater
Il1b, Tnf, and Ifnb1 mRNA expression than PR8-infected TLR4-
SNP mice (Fig. 6 E). Finally, viral load, as measured by qRT-PCR
analysis of lung RNA 6 d after infection, revealed significantly

Figure 6. Altered susceptibility of TLR4-SNP
mice to Kp and PR8 infections. (A) WT and
TLR4-SNP mice were infected with Kp B5055
(∼1,200 CFU i.p.) and monitored daily for sur-
vival for 7 d. Data represent the combined re-
sults of two separate experiments (n = 11 mice/
strain). Data analyzed by log-rank Mantel-Cox
test. P = 0.0258. (B) WT, TLR4-SNP, and
TLR4−/− mice were infected with influenza PR8
(∼7,500 TCID50 i.n.) and monitored daily for
survival for 14 d after PR8 infection. Data rep-
resent the combined results of three separate
experiments (WT, n = 15; TLR4-SNP, n = 18;
TLR4−/−, n = 14). Data analyzed by log-rank
Mantel-Cox test. TLR4−/− vs. TLR4-SNP: #, P =
0.019; WT vs. TLR4-SNP: ***, P = 0.0004; WT
vs. TLR4−/−: ****, P < 0.0001. (C and D)WT and
TLR4-SNP mice were infected as in B. On day 6
after infection, mice were euthanized and the
lungs extracted, fixed, and sectioned for histol-
ogy after H&E staining. (C) Representative sec-
tions from PR8-infected WT and TLR4-SNP mice
are shown (magnification 100×; scale bars = 500
µm). (D) Lung histopathology scoring. Data from
mock- or PR8-infected mice represent the mean ±
SEM of two separate experiments (6 mice/strain
for mock treatment; 18 mice/strain for PR8 in-
fection). Data analyzed by two-way ANOVA with
Tukey’s post hoc test. PR8-infected WT vs. TLR4-
SNP: P = 0.01 for each histological parameter
scored. (E) Gene expression analysis by qRT-PCR
of lung RNA from WT and TLR4-SNP mice in-
fected as in B. Each point represents the re-
sponses of individual mice from two separate
experiments (identical to the mice in D). Columns
represent the mean ± SEM. Data were analyzed
by two-way ANOVA with Tukey’s post hoc test.
PR8-infected WT vs. TLR4-SNP: Tnf, P = 0.0004;
Il1b, P = 0.0106; Ifnb1, P = 0.001.
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lower influenza M1 viral gene expression, as evidenced by in-
creased Ct values, in TLR4-SNP mice (Fig. S5 B). These data
support the conclusion that the TLR4-SNP mice are more re-
sistant to influenza-induced disease.

TLR4-SNP 298G/N397I mice exhibit increased susceptibility to
RSV infection
Previous studies associated the inheritance of TLR4 299/399
SNPs with RSV disease severity in infants and young children
(Tal et al., 2004; Mandelberg et al., 2006; Awomoyi et al., 2007;
Puthothu et al., 2006), although this too has been met with
controversy (Douville et al., 2010; Kresfelder et al., 2011). In WT
C57BL/6J mice, RSV-induced disease is associated with increased
lung pathology, but not lethality, and resolution of RSV-induced
lung pathology is dependent on IL-4Rα, IFN-β, and TLR4 for
induction of alternatively activated (M2) macrophages (Shirey
et al., 2010). In addition, RSV-infected TLR4−/− mice exhibited
enhanced proinflammatory (M1) gene expression and reduced
M2 gene expression in vivo and in RSV-infected macrophage
cultures (Shirey et al., 2010). To evaluate the effect of inheri-
tance of the homologous murine TLR4 298/397 SNPs on the host
response to RSV infection, WT and TLR4-SNP mice were either
mock or RSV infected i.n., and lungs were harvested for gene
expression and pathology after 6 d. TLR4-SNPmice responded to
RSV infection with significantly greater M1 cytokine gene ex-
pression (e.g., Tnf, Il1b, and Ptgs2) than WT mice (Fig. 7 A).
Conversely, analysis of M2 gene expression (e.g., Chil3,Mrc1, and
Arg1) revealed that each was expressed to a significantly reduced
degree in TLR4-SNP mice (Fig. 7 A). The transcription factor
PPARγ is necessary for M2 gene expression (Malur et al., 2009).
Levels of Pparg mRNA were greatly reduced in RSV-infected
TLR4-SNP lungs (Fig. 7 A), as observed for RSV-infected
TLR4−/− lungs (Shirey et al., 2010). Consistent with these and
previous findings using TLR4−/− mice, RSV-infected TLR4-SNP
mice exhibited greater pathology than WT mice with signifi-
cantly increased peribrochiolitis, perivasculitis, interstitial
pneumonitis, and alveolitis (Fig. 7 B). Finally, qRT-PCR analysis
of RSV NS1 viral gene expression in the lungs of RSV-infected
mice revealed significantly increased viral load (i.e., decreased
Ct values) in TLR4-SNP mice (Fig. S5 C). Together, these find-
ings support the conclusion that TLR4-SNP mice are more sus-
ceptible than WT mice to RSV-induced lung damage secondary
to enhanced M1 and reduced M2 gene expression.

Discussion
We engineered a knock-in mouse strain that homozygously
expresses two nonsynonymous SNPs in the extracellular domain
of TLR4 (D298G and N397I) that are positionally homologous to
the human TLR4 SNPs D299G and T399I, expressed by ∼10% to
18% of Caucasians (Ferwerda et al., 2007). In humans, these
often cosegregating TLR4 SNPs have been associated with de-
creased LPS responsiveness and increased or decreased sus-
ceptibility to a variety of infectious agents or immunological
disorders (reviewed in Schröder and Schumann, 2005;
Medvedev, 2013; Mukherjee et al., 2019; Balistreri et al., 2009).
However, conclusions from studies of human cohorts have often

been conflicting, although transfection studies generally support
the conclusion that expression of mutant TLR4 proteins lead to
reduced responsiveness to LPS as well as other TLR4 agonists,
e.g., RSV F protein, chlamydia Hsp60, and MPL (Rallabhandi
et al., 2006; Figueroa et al., 2012; Prohinar et al., 2010; Yamakawa
et al., 2013); however, until now, there has been no experimental
model with which to confirm or refute disease associations or
to analyze underlying mechanisms by which these SNPs alter
TLR4 functionality in primary cells.

After demonstrating the LPS hyporesponsiveness of the
TLR4-SNP mice in vivo, the responses of primary TLR4-SNP
macrophages to LPS were found to exhibit reduced MyD88- and
TRIF-dependent signaling and cytokine gene/protein expres-
sion. In contrast to studies in human TLR4-SNP–expressing
monocytes/macrophages (Hold et al., 2014), we observed no
difference in basal expression of MyD88- or TRIF-dependent
cytokine gene expression. Consistent with previous reports for
human TLR4 SNPs (Arbour et al., 2000; Tulic et al., 2007), two
different mAbs, Sa15-21 and UT12, were used to demonstrate
that surface TLR4 expression in the TLR4-SNPmacrophages was
approximately half that of WT macrophages, observations con-
firmed by Western analysis of whole-cell lysates using a rabbit
mAb made against recombinant murine TLR4 only. Differential
receptor expression did not, however, affect the rate of inter-
nalization of the TLR4/MD-2/CD14 complex that initiates TRIF-
dependent signaling (Kagan et al., 2008). Nagai et al. (2002)
reported that MD-2 was required to chaperone the TLR4 to the
cell surface, and Yamakawa et al. (2013) proposed that surface
TLR4 expression is altered in human TLR4-SNP–expressing cells
due to a conformational change that results in a failure of the
mutant TLR4 to interact correctly with MD-2. In contrast,
Visintin et al. (2006) used mAb Sa15-21 (the same mAb used in
our studies) in FACS analysis to show thatWT andMD-2−/− bone
marrow–derived or thioglycollate-inducedmacrophages express
comparable levels of TLR4 (i.e., MD-2 is not required for TLR4
expression). A possible conformational change in the structure
of TLR4 caused by the proximity of the human D299G SNP to the
TLR4 binding site for MD-2 has been proffered to underlie de-
creased responsiveness to LPS and, particularly, to weak TLR4
agonists (Yamakawa et al., 2013; Rallabhandi et al., 2008). Lipid
A–stimulated Ba/F3 cells expressing the human TLR4 (D299G/
T399I) SNPs exhibited decreased NF-κB activation compared
with Ba/F3 cells expressing WT human TLR4; however, when
stimulated with the weak TLR4 agonist, MPL (Henricson et al.,
1992), NF-κB activation in both cell types was further reduced,
with the response of the mutant cells more profoundly affected
(Yamakawa et al., 2013). Indeed, the transcriptional responses of
primary murine WT vs. TLR4-SNP macrophages to sMPL were
much more divergent than the differential response induced
by LPS.

Using purified proteins in solution, Yamakawa et al. (2013)
also observed that compared with lipid A, native MPL elicited a
much lower level of TLR4 dimerization in the presence of the
WT TLR4 protein and that dimerization was further reduced
when recombinant human TLR4(D299G/T399I)/MD-2 com-
plexes were stimulated with lipid A orMPL. Consistent with this
effect on purified protein–protein interactions, we observed that
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Eritoran, a lipid A analogue antagonist that blocks LPS-induced
TLR4 signaling by competitively binding to MD-2 (Kim et al.,
2007), and 4BB, a cell-permeating TLR4 BB loop peptide antag-
onist shown previously to block TLR4 dimerization (Toshchakov
et al., 2011; Szmacinski et al., 2014), were significantly more
effective at inhibiting TLR4-SNP than WT macrophage re-
sponses to LPS. These data provide compelling support for the
notion that in addition to reduced cell surface expression, the
TLR4-SNPs diminish TLR4 signaling by interfering with ligand-
induced dimerization. These findings also support previous
work in transfectants that express human WT or TLR4 SNP
proteins comparably yet exhibit decreased signaling and re-
cruitment of adaptor molecules to TLR4 upon LPS stimulation
(Rallabhandi et al., 2006; Figueroa et al., 2012).

LPS-unresponsive C3H/HeJ and TLR4−/− mice are highly
susceptible to infection with Gram-negative pathogens (O’Brien
et al., 1980; Cross et al., 1989; Roger et al., 2009). The increased
susceptibility of TLR4-SNPmice to Kp infection, accompanied by
increased bacterial burden in the liver and spleen, further
supports the hypothesis that a decreased ability to detect the LPS
of Gram-negative pathogens permits the pathogen to evade de-
tection, thereby facilitating systemic infection. Mechanistically,
we observed that TLR4-SNP macrophages are less sensitive to

LPS for regulating their metabolic profile. Efficient metabolic
switching to glycolysis in response to M1 stimuli has previously
been found to be a prerequisite for proinflammatory macro-
phage responses; glycolysis provides ATP for driving phagocy-
tosis, proinflammatory cytokine production, and NADPH for the
NADPH oxidase 2 enzyme to generate reactive oxygen species
(Mills et al., 2017; Hughes and O’Neill, 2018). Thus, a reduced
glycolytic response in TLR4-SNP macrophages possibly con-
tributes to decreased antimicrobial capacity. In addition to in-
creased glycolysis induced by LPS, WT macrophages exhibited
increased oxidative phosphorylation following LPS stimulation,
similar to the responses of resident peritoneal macrophages
(Davies et al., 2017, 2019) and human monocytes (Lachmandas
et al., 2016). The “macrophage metabolic switch” in which oxi-
dative phosphorylation is suppressed while glycolysis is in-
creased (Mills et al., 2017; Hughes and O’Neill, 2018) likely
requires induction of nitric oxide (Bailey et al., 2019; Palmieri
et al., 2020) and inhibition of the mechanistic target of rapa-
mycin complex 1 (mTORC1), mediated by IFN-γ (Su et al., 2015).
Activation cascades induced by LPS alone differ from that of LPS
+ IFN-γ in many regards (reviewed in Murray et al., 2014; Das
et al., 2018). Stimulation with LPS alone led WT macrophages to
increase mitochondrial respiration to maximum levels, as well

Figure 7. Altered susceptibility of TLR4-SNP mice to RSV infection. (A)WT and TLR4-SNP mice were infected with RSV A/Long (∼5 × 106 PFU i.n.). The
lungs were harvested for M1 and M2 gene expression analysis by qRT-PCR on day 6 after infection. Each point represents the responses of individual mice from
two separate experiments. Columns represent the mean ± SEM. Data were analyzed by two-way ANOVA with Tukey’s post hoc test. RSV-infected WT vs.
TLR4-SNP: Tnf, P = 0.0003; Il1b, P = 0.0006; Ptgs2, P < 0.0001; Chil3, P < 0.0001;Mrc1, P = 0.0005; Arg1, P = 0.0047; Pparg, P = 0.0003. (B)WT and TLR4-SNP
mice were infected with RSV A/Long as in A. The lungs were harvested for histopathology analysis on day 6 after infection. Each column represents the mean ±
SEM of the combined results of two separate experiments. Data were analyzed by two-way ANOVA with Tukey’s post hoc test. RSV-infected WT vs. TLR4-
SNP: peribronchiolitis, P = 0.0051; perivasculitis, P = 0.0039; interstitial pneumonitis, P = 0.0002; alveolitis, P = 0.0039.
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as increase mitochondrial electron transport that is uncoupled
from ATP synthesis (proton leak rate) and likely associated with
production of reactive oxygen species for microbial killing
(Chandel, 2015). For all observed LPS-induced metabolic changes,
TLR4-SNP macrophages exhibited reduced sensitivity to LPS that
may impact disease outcomes.

WT and TLR4-SNP mice were also challenged with influenza
(PR8) or RSV, infections that have been shown to have a strong
TLR4 involvement (Shirey et al., 2010, 2013). In response to
influenza infection, the TLR4-SNP mice were significantly more
resistant thanWTmice (67% vs. ∼10% survival) yet significantly
more sensitive to infection than the TLR4−/− mice. These find-
ings were paralleled by significantly decreased viral burden,
cytokine gene expression, and histopathology in the TLR4-SNP
mice, similar to that seen in WT mice infected with PR8 and
treated with the TLR4 antagonist Eritoran (Shirey et al., 2013,
2016). Eritoran blocks release of a host-derived “danger-
associated molecular pattern” and TLR4 agonist, HMGB1, in
influenza-infected mice, as well as HMGB1-induced TLR4 acti-
vation (Shirey et al., 2013, 2016). Conversely, therapeutic
administration of a small molecule HMGB1 antagonist to PR8-
infected mice was as protective as Eritoran (Shirey et al., 2016).
It is interesting to note that a recent in silico molecular docking
study revealed that the SARS-CoV-2 spike protein has the po-
tential to bind to the extracellular domains of human TLR1,
TLR4, and TLR6, with TLR4 being the strongest, and it was
proposed that TLR4 antagonists might represent novel in-
hibitors of the virus (Choudhury and Mukherjee, 2020). It has
also been proposed that HMGB1 may be a therapeutic target in
severe pulmonary inflammation associated with COVID-19
(Andersson et al., 2020). This raises the intriguing possibility
that individuals expressing the TLR4 299/399 SNPsmay bemore
resistant to influenza, as well as SARS-CoV-2 infection, although
to date, this has not been demonstrated.

In contrast to influenza, infection of WT C57BL/6 mice with
RSV A/Long is not lethal, despite significant pathology that is
resolved by M2 macrophages whose development is IL-4Rα,
IFN-β, and TLR4 dependent (Shirey et al., 2010). RSV infection
of TLR4-SNP mice was accompanied by increased histopathol-
ogy and M1 macrophage gene expression compared with WT
mice, confirming our previous report comparing WT and
TLR4−/− mice (Shirey et al., 2010). Conversely, development of
M2 macrophage markers, e.g., Chil3 (Ym1), Mrc1 (CD206), Arg1
(Arg-1), and Pparg (PPARγ) mRNA, were decreased in TLR4-SNP
mice after RSV infection, supporting the concept that M2 mac-
rophage development is necessary for amelioration of RSV-
induced pathology. These data strongly support our earlier
finding of an unexpected predominance of the D299G and T399I
TLR4 SNPs in cohort of infants and children with documented
severe RSV infection (Awomoyi et al., 2007). Several other re-
ports similarly identified an association of the TLR4 299/399
SNPs with RSV severity in infants/children (Tal et al., 2004;
Mandelberg et al., 2006; Puthothu et al., 2006), while others
have failed to identify such an association (Douville et al., 2010;
Kresfelder et al., 2011). The reasons for these differing ob-
servations are not obvious; however, expression of these TLR4
SNPs has been shown to differ in African, Asian, and European

populations (Ferwerda et al., 2007). Moreover, Caballero et al.
(2015) proposed that the severity of RSV was determined by a
combined effect of TLR4 haplotype and environmental exposure
to LPS in low vs. high socioeconomic populations. Notably, like
the weak TLR4 agonist sMPL, which elicited a greater divergence
in responses between WT and TLR4-SNP macrophages, the re-
sponse to RSV F protein, also a weak TLR4 agonist, was signifi-
cantly lower in HEK293T cells expressing both TLR4 SNPs than
either SNP alone (Rallabhandi et al., 2006). It is important to
note that prematurity, a predisposing factor for RSV, was shown
in a Finnish cohort to be associated with inheritance of the TLR4
299/399 SNPs (Lorenz et al., 2002a).

In summary, our data reinforce the concept that the effects of
the human TLR4 299/399 SNPs or the homologous murine SNPs
are highly context dependent; an altered balance between innate
detection and inflammation appears to underlie decreased LPS
responsiveness, increased sensitivity to bacterial infection, re-
sistance to influenza infection, and increased sensitivity to RSV
infection. This engineered mouse strain represents the first
model available for analysis of these common human TLR4-
SNPs and will permit molecular and cellular analyses of the
mechanisms underlying the importance of these TLR4 muta-
tions in infection, as well as in other inflammatory diseases or
immune processes in which TLR4 has been implicated (e.g.,
inflammatory bowel disease, atherosclerosis, Alzheimer’s dis-
ease, cancer, prematurity, arthritis, allergic airway disease, and
adjuvanticity).

Materials and methods
Model of the murine TLR4 D298G/N397I mutant structure
Based on the existing x-ray crystal structures of human TLR4
(PDB ID: 3FXI; Park et al., 2009), human TLR4 D299G and T399I
(PDB ID: 4G8A; Ohto et al., 2012), and murine TLR4 (PDB ID:
2Z64; Kim et al., 2007), we created a model of the equivalent
murine TLR4 double mutant, D298G, N397I. After alignment of
the human and murine TLR4 sequences (Clustal Omega; Sievers
et al., 2011), the structural model was constructed through a
combination of homology modeling (Phyre; Kelley et al., 2015)
and ab initio loop sampling (Coot; Emsley et al., 2010; Fig. 1 A).

Generation of TLR4 D298G/N397I (TLR4-SNP) mice
WTC57BL/6J mice were purchased from the Jackson Laboratory.
C57BL/6J mice harboring nucleotide substitutions in the en-
dogenous Tlr4 locus (TLR4-SNP mice) were generated using
CRISPR/Cas9-based targeting and homology-directed repair by
Cyagen Biosciences. The knock-in allele is regulated by native
elements present in the progenitor background. The amino acid
residues to be mutated were selected from the original identi-
fication of two SNPs in human TLR4 that were associated with
hyporesponsiveness to inhaled LPS (Arbour et al., 2000; i.e., the
equivalent amino acid residues in humans are D299G and T399I).
The small guide RNA (sgRNA) to the mouse Tlr4 gene, a donor
vector containing nonsynonymous GAT→GGT (D298G) and
AAC→ATC (N397I) nucleotide substitutions and synonymous
TTC→TTT (F302F) and GCC→GCT (A409A) nucleotide sub-
stitutions in exon 3 of mouse Tlr4, and Cas9 were coinjected into
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zygotes to obtain targeted knock-in offspring. The sgRNAs se-
lected for mouse generation had a minimum of three mis-
matches located predominantly in intergenic regions. For each
sgRNA, only four potential exonic off-target sites were pre-
dicted, none of which ranked in the top 40 and each of which
exhibited a minimum of four mismatches with a low probability
score. Founder animals were identified by sequencing PCR
product from genomic DNA. Two independent founder mice
generated on a C57BL/6J background (Jackson Laboratory) were
identified and crossed to WT C57BL/6J mice to test germline
transmission. Four F1 heterozygotes were found to be positive
for the knock-in allele. These heterozygotes were mated to de-
rive distinct F2 populations that were subsequently intercrossed
to obtain litters that were homozygous for the knock-in allele.
Subsequent crosses of homozygous knock-in mice yielded
healthy offspring that were used to study the responses pre-
sented in this report. DNA prepared from tail snips were se-
quenced from each litter to verify the presence of the knock-in
allele in a homozygous state using the following sequencing
primers: 59-CAAAACCTGGCTGGTTTACACGTC-39 (forward
primer) and 59-GTGTTAGTATAAGAGATGTCAAGG-39 (reverse
primer). An alignment of the nucleotides, followed by chro-
matogram traces, is shown in Fig. 1 B. WT and mutated codons
(i.e., nonsynonymous) are highlighted in green and pink, re-
spectively, while synonymous codons are highlighted in gray. As
indicated in the text and figure legends, each treatment group
(for in vivo studies) had at least five mice per treatment/ex-
periment, and each experiment was repeated at least three
times. In addition, most of our studies required that multiple
litters be combined to obtain sufficient numbers of mice for both
in vivo and in vitro studies. Age- (6–8 wk) and sex-matched WT
C57BL/6J mice were used for all experiments. TLR4−/− (kindly
provided by S. Akira; Osaka University, Osaka, Japan) and
backcrossed n > 12 generations onto a C57BL/6J background)
and TLR4-SNP mice described above were bred in the Uni-
versity of Maryland, Baltimore’s accredited animal facility. All
animal experiments were performed with Institutional Animal
Care and Use Committee approval from the University of
Maryland, Baltimore.

Reagents
Protein-free E. coli K235 LPS was prepared by the hot phenol-
water method as previously reported (McIntire et al., 1969).
Murine TNF-α and IL-1β ELISA kits were purchased from R&D
Systems and Invitrogen, respectively. sMPL (PHADTM) was
purchased from Avanti Polar Lipids. N-palmitoyl-S-[2,3-bis
(palmitoyloxy)-(2RS)-propyl]-(R)-cysteinyl-(S)-seryl-(S)-ly-
syl-(S)-lysyl-(S)-lysyl-(S)-Lys (P3C) and S-[2,3-bis(palmitoyloxy)-
(2RS)-propyl]-(R)-cysteinyl-(S)-seryl-(S)-lysyl-(S)-lysyl-(S)-lysyl-(S)
-Lys (P2C) and polyinosinic polycytidylic acid were purchased from
Invivogen and reconstituted according to manufacturer’s in-
structions. Eritoran was kindly provided by Eisai (Andover, MA).
The cell-permeating inhibitory peptide, 4BB, was synthesized as
described previously (Toshchakov et al., 2011). Directly PE-
conjugated anti-murine TLR4 (mAb Sa15-21) and isotype control
(rat IgG2a,κ) antibodies were purchased from BioLegend. Purified
UT-12 mAb (Ohta et al., 2006) was a kind gift from Drs. Robert

Munford and Mingfang Lu (National Institutes of Health, Bethesda,
MD). Both UT-12 and isotype control IgG2a,κ were conjugated to
DyLight 650 using Lightening-Link rapid antibody labeling kit
(Novus Biologicals) in parallel reactions following the manu-
facturer’s instructions. In addition to the antibodies previously de-
scribed for Western analyses of signaling molecules (Perkins et al.,
2018), rabbit mAbs specific for TLR2 (clone E1J2W), TLR4 (clone
D8L5W), and GAPDH (clone 14C10) were purchased from Cell Sig-
naling Technology.

qRT-PCR
qRT-PCR was performed on total RNA using an ABI Prism
7900HT Sequence Detection System with SYBR Green reagent
(Applied Biosystems) and transcript-specific primers (Cole et al.,
2006, 2008; Shirey et al., 2008). Levels of mRNA for specific
genes are reported as relative gene expression normalized to that
of WT mock-infected lungs, livers, or macrophages (“fold induc-
tion”; Livak and Schmittgen, 2001). The housekeeping gene en-
coding hypoxanthine-guanine phosphoribosyltransferase (Hprt)
was used for normalization of RNA levels within each sample.

qRT-PCR was performed on total macrophage RNA as de-
scribed above for lung and liver homogenates. In addition to
previously published primer sequences for detection of cytokine
gene expression, the following primer sets were used to detect
Tlr4 and Actb mRNA: TLR4 primer set 1: forward, 59-GGCAAC
TTGGACCTGAGGAG-39; reverse, 59-CATGGGCTCTCGGTCCAT
AG-39; TLR4 primer set 2: forward, 59-CCTGGCTGGGACTCTGAT
C-39; reverse, 59-ATTTCACACCTGGATAAATCC-39; and TLR4
primer set 3: forward, 59-CAAAACCTGGCTGGTTTACACGTC-39;
reverse, 59-GTGTTAGTATAAGAGATGTCAAGG-39; β-actin: for-
ward, 59-ACATTAAGGAGAAGCTGTGC-39; reverse, 59-TTCTGC
ATCCTGTCGGCAAT-39.

Analysis of in vivo responses to LPS
Mice were administered saline or LPS (5 µg/mouse in 25 µl) i.t.
(Feng et al., 2013). 18 h later, lungs were harvested for histo-
chemical staining, mRNA analysis by qRT-PCR, and cytokine
protein analysis of lung homogenates by ELISA as detailed
previously (Shirey et al., 2013). LPS-induced pathology was
scored on H&E-stained lung sections on a scale of 0–4 by a pa-
thologist (where 0 is no inflammation and 4 is maximum in-
flammation). All histological images were taken using an
Olympus BH-2 with light/fluorescence teaching microscope
with an attached Olympus DP70 digital camera and Olympus DP
Controller software.

In other experiments, age- and sex-matched mice were in-
jected i.p. with saline or LPS (doses indicated in the text and
figure legends). Mice were monitored for disease symptoms of
endotoxicity (Divanovic et al., 2005) and survival every 12 h for
6–8 d. Each of the cardinal symptoms of endotoxicity (lethargy,
piloerection, ocular discharge, and diarrhea) received a score
from 0 to 3, with 0 (no symptoms), 1 (mild symptoms),
2 (moderate symptoms), and 3 (severe symptoms), and a cu-
mulative score for each animal was recorded. In some experi-
ments, mice were injected i.p. with saline or a nontoxic dose of
LPS (25 µg/mouse), and 2 h later, sera and livers collected for
cytokine protein (by ELISA) and cytokine mRNA (by qRT-PCR).
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Analysis of in vitro responses to LPS
Thioglycolate-elicited peritoneal macrophages were obtained
and cultured as previously described (Perkins et al., 2018; Cole
et al., 2006, 2008; Shirey et al., 2008). Whole-cell lysates from
macrophage cultures were prepared and subjected to Western
blot and subsequent densitometric analyses for signaling mole-
cules as described previously (Perkins et al., 2018).

Measurement of surface TLR4 was performed using a FACS
Canto II Flow Cytometer (BD) using FACS Diva software (BD) in
the University of Maryland Flow Cytometry Core Facility, Cen-
ter for Innovative Biomedical Resources, collecting 104 single-
cell events per sample as described elsewhere (Richard et al.,
2019).

To calculate the ID50, 10-fold serial dilutions of Eritoran
(0.1–1,000 ng/ml) were used to pretreatmacrophages for 20min
or two- to threefold serial dilutions of 4BB were used to pretreat
macrophages for 30 min, followed by a 2-h stimulation with LPS
(10 ng/ml). The maximum inducible mRNA level was deter-
mined using the Prism 7 sigmoidal four-parameter best-fit al-
gorithm, using log-transformed inhibitor concentrations on the
x axis and −ΔCT (before anti-log transformation to obtain “fold
induction”) on the y axis. The “minimum” response was defined
as the average −ΔCT signal from unstimulated cells. For Eritoran,
linear regression analysis was applied to the data points sur-
rounding the half-maximal response on the linear portion of the
curve to derive the ID50. For 4BB, the Prism 7 sigmoidal four-
parameter best-fit algorithmwas applied with comparison of the
curves by extra sum-of-squares F test.

To measure macrophage glycolysis and oxidative phospho-
rylation, extracellular flux analyses (Seahorse) were performed.
Briefly, macrophages were seeded at 1–1.5 × 105 cells/well in
XF24microplates (Agilent Technologies) or at 8 × 104 cell/well in
XFe96 microplates (Agilent Technologies), and treated as indi-
cated. Standard glycolytic stress tests and mitochondrial stress
tests were performed on an XF24 or XFe96 Extracellular
Flux Analyzer (Agilent Technologies) with the following opti-
mizations (Bordt et al., 2017): XF media was supplemented with
0.4% fatty acid–free bovine serum albumin (#A7030; Sigma-
Aldrich), pH was adjusted to 7.4 with sodium hydroxide, and
the media was filter-sterilized (Steriflip; Millipore); compound
delivery ports A, B, and Cwere loaded with 75 µl (XF24) or 20 µl
(XFe96) of 10×, 11×, and 12× of the final drug concentrations,
respectively; for the glycolytic stress test, the standard 10 mM
L-glucose, 1 µM oligomycin, and 50 mM 2-deoxyglucose were
used; for the mitochondrial stress tests, 0.6 µM oligomycin, 4
µM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone +
10 mM sodium pyruvate, and 1 µM antimycin A (AA) were used
based on prior compound titration results; and after the stan-
dard temperature and pH equilibration, an additional 15-min
equilibration step was added to the XF run protocol, consisting
of three cycles of 3-min mix and 2-min wait before baseline
measurements were performed. Data were normalized to cell
counts on bright-field pictures taken of the center of each well
using a Revolve light microscope (ECHO) before the Seahorse
run, analyzed using the Wave for Desktop software suite
(Agilent Technologies), and plotted in GraphPad Prism 7,
whereby a scalar of 6.8 was applied to all extracellular

acidification rate (ECAR) measurements performed on the
XFe96 instrument based on the difference in sensitivity be-
tween this and the XF24 instrument used for prior experi-
ments. Differences in oxygen consumption rate (OCR) were
negligible between the two instruments. The tissue culture
supernatants of macrophages treated for 24 h with medium
alone or a range of LPS doses were assayed for the concentra-
tion of L-lactate using a colorimetric redox reaction (#MAK329;
Sigma-Aldrich) that paired the oxidation of L-lactate to the
reduction of a formazan reagent, forming a product that was
detectable at 630 nm.

Analysis of in vivo susceptibility to bacterial and
viral pathogens
Bacterial challenge studies
Kp O1K2 strain B5055 (kindly provided by Dr. Alan Cross, Uni-
versity of Maryland, School of Medicine, Baltimore, MD) was
streaked onto trypticase soy agar plates and grown overnight at
37°C. Single-colony isolates were grown to log phase in trypti-
case soy broth. The optical density of the bacterial suspension
(OD600) was determined. 6-wk-old male and female WT and
TLR4-SNP mice were inoculated i.p. with Kp (∼1,000 CFU).
Survival was monitored for 7 d after infection. To quantify
bacterial burden, WT and TLR4-SNP mice were inoculated i.p.
with Kp (∼1,500 CFU). After 18 h of infection, mice were eu-
thanized. The spleen and medial lobe from the liver were re-
moved and homogenized in sterile PBS and plated for colony
counts.

Virus challenge studies
Mouse-adapted H1N1 influenza A/PR/8/34 virus (PR8; American
Type Culture Collection) was kindly provided by Dr. Donna
Farber (Columbia University, New York, NY). 6-wk-old male
and femaleWT, TLR4−/−, and TLR4-SNPmicewere infectedwith
PR8 (∼7,500 50% tissue culture infectious dose [TCID50], i.n.,
25 µl/nare). Mice were monitored daily for survival for 14 d. In
some experiments, mice were euthanized 6 d after infection to
harvest lungs for analysis of gene expression and lung pathol-
ogy. Influenza M1 viral gene expression was measured to de-
termine virus level in the lungs of WT and TLR4-SNP mice
(Boukhvalova et al., 2020). The following primers were used:
forward, 59-GCAGAGACTTGAAGATGTCTTTGC-39; reverse, 59-
GGGCATTTTGGACAAAGCGTCTAC-39.

RSV Long strain (group A) was obtained fromAmerican Type
Culture Collection and propagated as described previously
(Richardson et al., 2005). 6-wk-old male and female WT and
TLR4-SNP mice were mock-infected with saline or infected
with RSV (5 × 106 PFU/mouse i.n., 25 µl/nare). Lungs were
harvested 6 d after infection for analysis of gene expression and
lung pathology as described previously (Prince et al., 1999). RSV
NS1 viral gene expression was measured to determine virus
level in the lungs of WT and TLR4-SNP mice (Boukhvalova et
al., 2007). The following primers were used: forward, 59-CAC
AACAATGCCAGTGCTACAA-39; reverse, 59-TTAGACCATTAG
GTTGAGAGCAATGT-39.

For both influenza and RSV infection, viral-induced lung
histopathology was evaluated as follows. Fixed sections (10 µm)
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of paraffin-embedded lungs were stained with H&E. Four in-
flammatory parameters were scored independently from 0 to 4
for each section as described previously (Prince et al., 1999):
peribronchiolitis (inflammatory cells, primarily lymphocytes
surrounding a bronchiole), perivasculitis (inflammatory cells,
primarily lymphocytes surrounding a blood vessel), alveolitis
(inflammatory cells within alveolar spaces), and interstitial
pneumonitis (increased thickness of alveolar walls associated with
the infiltration of inflammatory cells). Slides of lung sections were
randomized, read blindly, and scored for each parameter.

Statistics
All data were analyzed using GraphPad Prism software. Survival
data were analyzed using a Wilcoxon log-rank test. All other
data are presented as means with SEM, with individual re-
sponses indicated. Where relevant, the sample size is indicated
in the text or figure legends. qRT-PCR data were analyzed using
the nontransformed −ΔCt values after normalization to the
housekeeping gene Hprt but are graphically presented as “fold-
increase” relative to the response of untreated RNA preparations
from WT mice or macrophages (2−ΔΔCt; Livak and Schmittgen,
2001) to ease interpretation of results. Statistical significance
was determined using one- or two-way ANOVA, with differ-
ences between treatment groups evaluated by post hoc compar-
isons (e.g., Tukey or Sidak post hoc tests), extra sum-of-squares
F test, a Student’s t test, or Mann–Whitney U test, as indicated in
the figure legends. P values from post hoc analyses of ANOVAs
were adjusted formultiple comparisons. P values are shown in the
figures, figure legends, or both. A P value <0.05 was considered
statistically significant, except in two-way ANOVA of metabolic
measurements, where α = 0.10.

Online supplemental material
Fig. S1 shows various superimposed models of human and mu-
rine WT and TLR4 SNP proteins. Fig. S2 shows a high magni-
fication of the lung section of a WT mouse administered LPS i.t.,
as well as lung and liver mRNA responses from WT and TLR4-
SNP mice challenged with LPS by different routes. Fig. S3 shows
that the TLR4-SNPmacrophages have a reduced response to LPS
but a normal response to TLR2 and TLR3 agonists and that
equivalent levels of Tlr4mRNA were found in macrophages and
livers of WT and TLR4-SNP mice. Fig. S4 illustrates the glyco-
lytic and mitochondrial stress test measurements taken and
provides additional data on glycolytic capacity, ATP production,
proton leak, and mitochondrial coupling efficiency in WT and
TLR4-SNP macrophages stimulated with LPS. Fig. S5 shows
measurements of pathogen burden in WT and TLR4-SNP mice
infected with Kp, PR8, and RSV.
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Supplemental material

Figure S1. Structural analysis of the D298 region in murine TLR4 D298G/N397I model. (A) Superimposed models of human T399 (blue) and murine N397
SNPs (pink). (B) Superimposed models of WT human D299 (blue) and murine D298 (pink) to show the relative distance from D325 and D323, respectively.
(C) Superimposed models of human WT D299 and human TLR4 D299G SNP and their relative proximity to D325. (D) Superimposition of five models showing
differences in the orientation of murine TLR4 D298. (E) Superimposed models of murine WT (green) vs. murine TLR4 D298G (pink).
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Figure S2. TLR4-SNP mice exhibit reduced lung pathology and cytokine mRNA in response to i.t. administration of LPS (5 µg/mouse). (A) Repre-
sentative H&E-stained lung section from theWTmouse shown in Fig. 2 A showing neutrophil and lymphocyte infiltration at higher magnification (1,000×; scale
bar = 50 µm). (B) Lung RNA was derived from the same mice described in Fig. 2 A, and cytokine mRNA was measured by qRT-PCR. Each point represents an
individual mouse, and data are combined from three separate experiments. Each column represents the mean ± SEM. Data were analyzed by one-way ANOVA
with Tukey’s post hoc test. LPS-stimulated WT vs. TLR4-SNP: Tnf, P = 0.0164; Il1b, P = 0.006; Cxcl10, P = 0.0131. (C) TLR4-SNP mice exhibit reduced liver
cytokine mRNA in response to i.p. administration of LPS (25 µg/mouse). Liver RNA was derived from the same mice described in Fig. 2 D, and cytokine mRNA
was measured by qRT-PCR. Each point represents the response of an individual mouse, and data are combined from three separate experiments. Each column
represents the mean ± SEM. Data were analyzed by one-way ANOVA with Tukey’s post hoc test. LPS-stimulated WT vs. TLR4-SNP: Il1b, P = 0.0087; Ifnb1, P <
0.0001; Il12b, P < 0.0001; Il6, P < 0.0001.

Figure S3. TLR4-SNP macrophages exhibit normal responses to TLR2 and TLR3 agonists, and steady-state Tlr4 mRNA is expressed equivalently in
WT and TLR4-SNPmacrophages and liver samples. (A) Responses ofWT (open bars) vs. TLR4-SNP (gray bars) macrophages to TLR2 (P2C and P3C, 1 µg/ml;
4 h) and TLR3 (p(I:C), 50 µg/ml; 6 h) agonists are not significantly different, in contrast to TLR4 (LPS, 10 ng/ml; 2 h). Results represent the mean ± SEM of four
separate experiments and were analyzed by two-way ANOVA with Sidak’s multiple comparison post-test. *, P = 0.046. (B and C) Steady-state levels of Tlr4
mRNA are not significantly different in WT vs. TLR4-SNP macrophage or liver RNA. The data represent Tlr4 mRNA levels from untreated pooled macrophage
cultures from the six individual experiments analyzed in Fig. 3 B (B) and livers of 9 WT vs. 10 TLR4-SNP mice (C). qRT-PCR was performed using distinct primer
sets for Tlr4mRNA and two housekeeping genes, Hprt and ActbmRNA, to ensure equivalent RNA loading. Data were analyzed by one-way ANOVA with Sidak
multiple comparison post-test. N.S., not significant.
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Figure S4. Metabolic analysis of WT and TLR4-SNP macrophages. (A) Diagram of glycolytic stress test measurements (reproduced with permission;
courtesy of Agilent Technologies). (B) Glycolytic capacity ([ECAR after inhibition of mitochondrial ATP synthase with oligomycin forcing all cellular energy
production to the glycolytic pathway] − [ECAR after inhibition of glycolysis with excess 2-deoxyglucose]) from the same experiments as in Fig. 4 B (combined
data from nine separate experiments). Data were analyzed by two-way ANOVA (α = 0.10), with Sidak’s multiple comparison post-tests to compare WT and
TLR4-SNP responses as follows: untreated, not significant (N.S.); 1 ng/ml LPS, N.S.; 100 ng/ml LPS, N.S.; WT and TLR4−/− responses: untreated, N.S.; 1 ng/ml
LPS, ***, P = 0.0001; 100 ng/ml LPS, ***, P = 0.0011; TLR4-SNP and TLR4−/− responses: 100 ng/ml LPS, **, P = 0.010 (adjusted for multiple comparisons).
(C) Diagram of mitochondrial stress test measurements (reproduced with permission; courtesy of Agilent Technologies). (D) ATP production ([OCR before any
injection] − [OCR after injecting ATP synthase inhibitor oligomycin]) from the same experiments as in Fig. 4 (E and F; combined data from seven separate
experiments). Data were analyzed by two-way ANOVA (α = 0.10), with Sidak’s multiple comparison post-tests to compare WT and TLR4-SNP responses as
follows: untreated, N.S.; 1 ng/ml LPS, N.S.; 100 ng/ml LPS, N.S.; WT and TLR4−/− responses: untreated, N.S.; 1 ng/ml LPS, **, P = 0.0067; 100 ng/ml LPS, **, P =
0.0023; TLR4-SNP and TLR4−/− responses at 100 ng/ml LPS, N.S. (adjusted for multiple comparisons). (E) Proton leak ([OCR after ATP synthase inhibition by
oligomycin] − [OCR after electron transport inhibition by AA]) from the same experiments as in Fig. 4 (E and F). Data were analyzed by two-way ANOVA (α =
0.10), with Sidak’s multiple comparison post-tests to compare WT vs. TLR4-SNP responses as follows: untreated, N.S.; 1 ng/ml LPS, **, P = 0.014; 100 ng/ml
LPS, N.S.; WT vs. TLR4−/− responses: untreated, N.S.; 1 ng/ml LPS, ***, P = 0.0002; 100 ng/ml LPS, ***, P < 0.0001; TLR4-SNP vs. TLR4−/− responses at
100 ng/ml LPS, ***, P < 0.0001. (adjusted for multiple comparisons). (F) Mitochondrial coupling efficiency (100 × [ATP production rate]/[basal respiration
rate]) from the same experiments as in Fig. 4 (E and F) (combined data from seven separate experiments). Data were analyzed by two-way ANOVA (α = 0.10),
with Sidak’s multiple comparison post-tests to compare WT vs. TLR4-SNP responses: untreated, N.S.; 1 ng/ml LPS, N.S.; 100 ng/ml LPS, N.S.; WT vs. TLR4−/−

responses: untreated, N.S.; 1 ng/ml LPS, **, P = 0.0025; 100 ng/ml LPS,***, P < 0.0001; TLR4-SNP vs. TLR4−/− responses at 100 ng/ml LPS, ***, P < 0.0001
(adjusted for multiple comparisons).
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Figure S5. Pathogen burden in WT- and TLR4-SNP–infected mice. (A)WT and TLR4-SNP mice were infected with Kp B5055 (∼1,500 CFU i.p.). Livers and
spleens were harvested after 18 h for bacterial burden by CFUs for each organ. Data represent the combined results of two separate experiments (n = 10 WT;
n = 9 TLR4-SNP). Data were analyzed by two-way ANOVA with Tukey’s post hoc test (****, P < 0.0001). (B) The identical samples from WT and TLR4-SNP
mice shown in Fig. 6 E were analyzed by qRT-PCR for expression of the influenza M1 gene from two separate experiments. Data were analyzed by two-way
ANOVA with Tukey’s post hoc test (P = 0.0043). (C) The WT and TLR4-SNP lung RNA samples shown in Fig. 7 A were used to measure RSV NS1 gene ex-
pression by qRT-PCR. Data were analyzed by two-way ANOVA with Tukey’s post hoc test (P = 0.0489).
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