17 research outputs found

    RNA-Sequencing Analyses Demonstrate the Involvement of Canonical Transient Receptor Potential Channels in Rat Tooth Germ Development

    No full text
    Tooth development depends on multiple molecular interactions between the dental epithelium and mesenchyme, which are derived from ectodermal and ectomesenchymal cells, respectively. We report on a systematic RNA sequencing analysis of transcriptional expression levels from the bud to hard tissue formation stages of rat tooth germ development. We found that GNAO1, ENO1, EFNB1, CALM1, SIAH2, ATP6V0A1, KDELR2, GTPBP1, POLR2C, SORT1, and members of the canonical transient receptor potential (TRPC) channel family are involved in tooth germ development. Furthermore, Cell Counting Kit 8 (CCK8) and Transwell migration assays were performed to explore the effects of these differentially expressed genes (DEGs) on the proliferation and migration of dental pulp stem cells. Immunostaining revealed that TRPC channels are expressed at varying levels during odontogenesis. The identified genes represent novel candidates that are likely to be vital for rat tooth germ development. Together, the results provide a valuable resource to elucidate the gene regulatory mechanisms underlying mammalian tooth germ development

    The mitophagy pathway and its implications in human diseases

    No full text
    Abstract Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine

    Clinical Implications of iNOS Levels in Triple-Negative Breast Cancer Responding to Neoadjuvant Chemotherapy

    No full text
    <div><p>Triple-negative breast cancer is a high-risk breast cancer with poor survival rate. To date, there is a lack of targeted therapy for this type of cancer. One unique phenomenon is that inflammatory breast cancer is frequently triple negative. However, it is still ambiguous how inflammation influences triple-negative breast cancer growth and responding to chemotherapy. Herein, we investigated the levels of inflammation-associated enzyme, iNOS, in 20 triple-negative breast cancer patients’ tumors, and examined its correlation with patients’ responses to platinum-based neoadjuvant chemotherapy. Our studies showed that triple-negative breast cancer patients with attenuated iNOS levels in tumor cells after treatment showed better responses to platinum-based neoadjuvant chemotherapy than other triple-negative breast cancer patients. Our further <i>in vitro</i> studies confirmed that induction of proper levels of NO increased the resistance to cisplatin in triple-negative MDA-MB-231 cells. Our data suggest that aberrant high level of iNOS/NO are associated with less effectiveness of platinum-based neoadjuvant chemotherapy in triple-negative breast cancer. Therefore, we propose to monitor iNOS levels as a new predictor for triple-negative breast cancer patient’s response to platinum-based neoadjuvant chemotherapy. Moreover, iNOS/NO is considered as a potential target for combination therapy with platinum drugs for triple-negative breast cancer.</p></div
    corecore