32 research outputs found

    The Pathogenesis of Necroptosis-Dependent Signaling Pathway in Cerebral Ischemic Disease

    No full text
    Necroptosis is the best-described form of regulated necrosis at present, which is widely recognized as a component of caspase-independent cell death mediated by the concerted action of receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3). Mixed-lineage kinase domain-like (MLKL) was phosphorylated by RIPK3 at the threonine 357 and serine 358 residues and then formed tetramers and translocated onto the plasma membrane, which destabilizes plasma membrane integrity leading to cell swelling and membrane rupture. Necroptosis is downstream of the tumor necrosis factor (TNF) receptor family, and also interaction with NOD-like receptor pyrin 3 (NLRP3) induced inflammasome activation. Multiple inhibitors of RIPK1 and MLKL have been developed to block the cascade of signal pathways for procedural necrosis and represent potential leads for drug development. In this review, we highlight recent progress in the study of roles for necroptosis in cerebral ischemic disease and discuss how these modifications delicately control necroptosis

    The Transcription Factors TaTDRL and TaMYB103 Synergistically Activate the Expression of TAA1a in Wheat, Which Positively Regulates the Development of Microspore in Arabidopsis

    No full text
    Pollen fertility plays an important role in the application of heterosis in wheat (Triticum aestivum L.). However, the key genes and mechanisms underlying pollen abortion in K-type male sterility remain unclear. TAA1a is an essential gene for pollen development in wheat. Here, we explored the mechanism involved in its transcriptional regulation during pollen development, focusing on a 1315-bp promoter region. Several cis-acting elements were identified in the TAA1a promoter, including binding motifs for Arabidopsis thaliana AtAMS and AtMYB103 (CANNTG and CCAACC, respectively). Evolutionary analysis indicated that TaTDRL and TaMYB103 were the T. aestivum homologs of AtAMS and AtMYB103, respectively, and encoded nucleus-localized transcription factors containing 557 and 352 amino acids, respectively. TaTDRL and TaMYB103 were specifically expressed in wheat anthers, and their expression levels were highest in the early uninucleate stage; this expression pattern was consistent with that of TAA1a. Meanwhile, we found that TaTDRL and TaMYB03 directly interacted, as evidenced by yeast two-hybrid and bimolecular fluorescence complementation assays, while yeast one-hybrid and dual-luciferase assays revealed that both TaTDRL and TaMYB103 could bind the TAA1a promoter and synergistically increase its transcriptional activity. Furthermore, TaTDRL-EAR and TaMYB103-EAR transgenic Arabidopsis plants displayed abnormal microspore morphology, reduced pollen viability, and lowered seed setting rates. Additionally, the expression of AtMS2, a TAA1a homolog, was significantly lower in the two repressor lines than in the corresponding overexpression lines or WT plants. In summary, we identified a potential transcriptional regulatory mechanism associated with wheat pollen development

    De Novo Assembly and Transcriptome Analysis of Wheat with Male Sterility Induced by the Chemical Hybridizing Agent SQ-1.

    No full text
    Wheat (Triticum aestivum L.), one of the world's most important food crops, is a strictly autogamous (self-pollinating) species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther transcriptomes for male fertile wheat and SQ-1-induced male sterile wheat was carried out using next-generation sequencing technology. In all, 42,634,123 sequence reads were generated and were assembled into 82,356 high-quality unigenes with an average length of 724 bp. Of these, 1,088 unigenes were significantly differentially expressed in the fertile and sterile wheat anthers, including 643 up-regulated unigenes and 445 down-regulated unigenes. The differentially expressed unigenes with functional annotations were mapped onto 60 pathways using the Kyoto Encyclopedia of Genes and Genomes database. They were mainly involved in coding for the components of ribosomes, photosynthesis, respiration, purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, RNA transport and signal transduction, reactive oxygen species metabolism, mRNA surveillance pathways, protein processing in the endoplasmic reticulum, protein export, and ubiquitin-mediated proteolysis. This study is the first to provide a systematic overview comparing wheat anther transcriptomes of male fertile wheat with those of SQ-1-induced male sterile wheat and is a valuable source of data for future research in SQ-1-induced wheat male sterility

    Identification of the WUSCHEL-Related Homeobox (WOX) Gene Family, and Interaction and Functional Analysis of TaWOX9 and TaWUS in Wheat

    No full text
    The WUSCHEL-related homeobox (WOX) is a family of plant-specific transcription factors, with important functions, such as regulating the dynamic balance of division and differentiation of plant stem cells and plant organ development. We identified 14 distinct TaWOX genes in the wheat (Triticum aestivum L.) genome, based on a genome-wide scan approach. All of the genes under evaluation had positional homoeologs on subgenomes A, B and D except TaWUS and TaWOX14. Both TaWOX14a and TaWOX14d had a paralogous copy on the same genome due to tandem duplication events. A phylogenetic analysis revealed that TaWOX genes could be divided into three groups. We performed functional characterization of TaWOX genes based on the evolutionary relationships among the WOX gene families of wheat, rice (Oryza sativa L.), and Arabidopsis. An overexpression analysis of TaWUS in Arabidopsis revealed that it affected the development of outer floral whorl organs. The overexpression analysis of TaWOX9 in Arabidopsis revealed that it promoted the root development. In addition, we identified some interaction between the TaWUS and TaWOX9 proteins by screening wheat cDNA expression libraries, which informed directions for further research to determine the functions of TaWUS and TaWOX9. This study represents the first comprehensive data on members of the WOX gene family in wheat

    Abnormal Development of Tapetum and Microspores Induced by Chemical Hybridization Agent SQ-1 in Wheat

    No full text
    <div><p>Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.</p></div

    A simple mode of SQ-1–induced male sterility in wheat.

    No full text
    <p>Some important unigenes are related to wheat male sterility induced by SQ-1. “↑” in the ellipses indicates unigenes that were up-regulated in sterile wheat, “↓” in the ellipses indicates unigenes that were down-regulated, and “()” represents the number of differentially expressed unigenes.</p
    corecore