244 research outputs found

    Exotic dynamics of rogue waves in the scalar and coupled nonlocal nonlinear Schr\"{o}dinger equations

    Full text link
    In this paper, general higher-order rogue wave solutions of the parity-time (PT\mathcal {P}\mathcal {T}) symmetric scalar and coupled nonlocal nonlinear Schr\"{o}dinger equations (NLSEs) are calculated theoretically via a Darboux transformation by a separation of variable technique. Furthermore, in order to understand these solutions better, the main characteristics of the obtained solutions are explored clearly and conveniently. Our results show that the dynamics of these solutions exhibits rich patterns, most of which have no counterparts in the corresponding local equations.Comment: 25 pages,18 figure

    Exposure of the Hidden Anti-Ferromagnetism in Paramagnetic CdSe:Mn Nanocrystals

    Full text link
    We present theoretical and experimental investigations of the magnetism of paramagnetic semiconductor CdSe:Mn nanocrystals and propose an efficient approach to the exposure and analysis of the underlying anti-ferromagnetic interactions between magnetic ions therein. A key advance made here is the build-up of an analysis method with the exploitation of group theory technique that allows us to distinguish the anti-ferromagnetic interactions between aggregative Mn2+ ions from the overall pronounced paramagnetism of magnetic ion doped semiconductor nanocrystals. By using the method, we clearly reveal and identify the signatures of anti-ferromagnetism from the measured temperature dependent magnetisms, and furthermore determine the average number of Mn2+ ions and the fraction of aggregative ones in the measured CdSe:Mn nanocrystals.Comment: 26 pages, 5 figure

    Diazido­bis(2,2′-biimidazole)cobalt(II)

    Get PDF
    In the title compound, [Co(N3)2(C6H6N4)2], the CoII atom lies on a centre of inversion and is bonded to two azide ions and two bidentate 2,2′-biimidizole ligands, giving a slightly distorted octa­hedral CoN6 coordination geometry. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds exist between the 2,2′-biimidizole ligands and the azide ions, linking the complexes into sheets

    A Phase Change Storage Material that May be Used in the Fire Resistance of Building Structure

    Get PDF
    AbstractThis study prepared polyethylene glycol/silicon dioxide composite, a kind of form-stable phase change material. The composites can be made into mortar which is able to adhere to the surface of building structure and absorb the fire heat. This paper aims to study the effect of the composites on the fire resistance of building structure. Scanning electronic microscope and differential scanning calorimeter were adopted to investigate the structural and thermal properties of the composites. It was found that the polyethylene glycol was well dispersed into the network of solid SiO2. And the latent heat of PEG/SiO2 increased with the decrease of SiO2 content. The required weight percentage of SiO2 was found to be 15% at least if the composites remain solid without leakage. It was also found that a phase change of pure PEG6000 happened with an enthalpy of 158J/g while the 80 wt% PEG composite is 133J/g. In conclusion, the phase change storage material may be used for fire resistance of building structure

    Bis{μ-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}bis­[(thio­cyanato)manganese(III)]

    Get PDF
    The reported structure is a monoclinic polymorph of the title compound, [Mn2(C16H14N2O2)2(NCS)2], which has been characterized previously in an ortho­rhom­bic form. Each MnIII atom is chelated by a tetra­dentate 2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate ligand and by the N atom of a thio­cyanate anion, in a square-pyramidal arrangement. The complexes form centrosymmetric dimers, with an Mn—O contact of 2.557 (3) Å trans to each thio­cyanate anion, completing a distorted octa­hedral coordination geometry

    μ-Oxido-bis­{chlorido[tris­(2-pyridylmeth­yl)amine]chromium(III)} bis(hexafluoridophosphate)

    Get PDF
    The title compound, [Cr2Cl2O(C18H18N4)2](PF6)2, is isostructural with the VIII analogue. Each CrIII atom is chelated by the tetra­dentate tris­(2-pyridylmeth­yl)amine ligand via four N atoms, and further coordinated by one Cl atom and one bridging O atom, giving a slightly distorted octa­hedral coordination geometry. The dinuclear complex is centrosymmetric, with the bridging O atom lying on a centre of inversion

    catena-Poly[[[diaqua­terbium(III)]-μ-6-carboxy­nicotinato-μ-pyridine-2,5-di­carboxyl­ato] dihydrate]

    Get PDF
    The title compound, {[Tb(C7H3NO4)(C7H4NO4)(H2O)2]·2H2O}n, is isotypic with the analogous TmIII compound [Li, Zhang, Wang & Bai (2009). Acta Cryst. E65, m411]. The TbIII atom is octa­coordinated by two water mol­ecules and by four carboxyl­ate O atoms and two pyridyl N atoms from two pyridine-2,5-dicarboxyl­ate (2,5-pydc) and two 6-carboxy­nicotinate (2,5-Hpydc) ligands. The 2,5-pydc and 2,5-Hpydc ligands bridge TbIII atoms, generating helical coordination polymers along [001]. An extensive network of O—H⋯O hydrogen bonds is formed between the coordination polymers and the uncoordinated water mol­ecules. The refined Flack parameter of 0.54 (2) suggests inversion twinning

    Loss of FKBP5 Affects Neuron Synaptic Plasticity: An Electrophysiology Insight

    Get PDF
    FKBP5 (FKBP51) is a glucocorticoid receptor (GR) binding protein, which acts as a co-chaperone of heat shock protein 90 (HSP90) and negatively regulates GR. Its association with mental disorders has been identified, but its function in disease development is largely unknown. Long-term potentiation (LTP) is a functional measurement of neuronal connection and communication, and is considered one of the major cellular mechanisms that underlies learning and memory, and is disrupted in many mental diseases. In this study, a reduction in LTP in Fkbp5 knockout (KO) mice was observed when compared to WT mice, which correlated with changes to the glutamatergic and GABAergic signaling pathways. The frequency of mEPSCs was decreased in KO hippocampus, indicating a decrease in excitatory synaptic activity. While no differences were found in levels of glutamate between KO and WT, a reduction was observed in the expression of excitatory glutamate receptors (NMDAR1, NMDAR2B and AMPAR), which initiate and maintain LTP. The expression of the inhibitory neurotransmitter GABA was found to be enhanced in Fkbp5 KO hippocampus. Further investigation suggested that increased expression of GAD65, but not GAD67, accounted for this increase. Additionally, a functional GABAergic alteration was observed in the form of increased mIPSC frequency in the KO hippocampus, indicating an increase in presynaptic GABA release. Our findings uncover a novel role for Fkbp5 in neuronal synaptic plasticity and highlight the value of Fkbp5 KO as a model for studying its role in neurological function and disease development
    corecore