4 research outputs found

    Carbazolyl-Substituted [OSSO]-Type Zirconium(IV) Complex as a Precatalyst for the Oligomerization and Polymerization of α-Olefins

    No full text
    The dibenzyl zirconium(IV) complex (4) incorporating with a carbazolyl(Cbz)-substituted [OSSO]-type bis(phenolate) ligand was synthesized. Upon activation with dried modified methylaluminoxane (dMMAO), precatalyst 4 at relatively low catalyst loadings was found to promote the 1,2-regioselective oligomerization of 1-hexene to produce the corresponding vinylidene-ended oligomers with moderate turnover frequencies (TOFs) up to 2080 h−1. The 13C NMR analysis of the resulting oligomers revealed the formation of dimer-enriched oligo(1-hexene)s in 39–62% distributions. The precatalyst 4 with dried methylaluminoxane (dMAO) also exhibited good performance in the polymerization of styrene yielding isotactic polystyrenes ([mm] > 99%) with quite large molecular weights (Mw < 508,100 g mol−1) and relatively high catalytic activity (up to 2810 g mmol(4)−1 h−1)

    POGLUT1, the putative effector gene driven by rs2293370 in primary biliary cholangitis susceptibility locus chromosome 3q13.33

    Get PDF
    Primary biliary cholangitis (PBC) is a chronic and cholestatic autoimmune liver disease caused by the destruction of intrahepatic small bile ducts. Our previous genome-wide association study (GWAS) identified six susceptibility loci for PBC. Here, in order to further elucidate the genetic architecture of PBC, a GWAS was performed on an additional independent sample set, then a genome-wide meta-analysis with our previous GWAS was performed based on a whole-genome single nucleotide polymorphism (SNP) imputation analysis of a total of 4, 045 Japanese individuals (2, 060 cases and 1, 985 healthy controls). A susceptibility locus on chromosome 3q13.33 (including ARHGAP31, TMEM39A, POGLUT1, TIMMDC1, and CD80) was previously identified both in the European and Chinese populations and was replicated in the Japanese population (OR = 0.7241, P = 3.5 × 10⁻⁹). Subsequent in silico and in vitro functional analyses identified rs2293370, previously reported as the top-hit SNP in this locus in the European population, as the primary functional SNP. Moreover, e-QTL analysis indicated that the effector gene of rs2293370 was Protein O-Glucosyltransferase 1 (POGLUT1) (P = 3.4 × 10⁻⁸). This is the first study to demonstrate that POGLUT1 and not CD80 is the effector gene regulated by the primary functional SNP rs2293370, and that increased expression of POGLUT1 might be involved in the pathogenesis of PBC

    X Chromosome Contribution to the Genetic Architecture of Primary Biliary Cholangitis.

    Get PDF
    BACKGROUND & AIMS: Genome-wide association studies in primary biliary cholangitis (PBC) have failed to find X chromosome (chrX) variants associated with the disease. Here, we specifically explore the chrX contribution to PBC, a sexually dimorphic complex autoimmune disease. METHODS: We performed a chrX-wide association study, including genotype data from 5 genome-wide association studies (from Italy, United Kingdom, Canada, China, and Japan; 5244 case patients and 11,875 control individuals). RESULTS: Single-marker association analyses found approximately 100 loci displaying P < 5 × 10(-4), with the most significant being a signal within the OTUD5 gene (rs3027490; P = 4.80 × 10(-6); odds ratio [OR], 1.39; 95% confidence interval [CI], 1.028-1.88; Japanese cohort). Although the transethnic meta-analysis evidenced only a suggestive signal (rs2239452, mapping within the PIM2 gene; OR, 1.17; 95% CI, 1.09-1.26; P = 9.93 × 10(-8)), the population-specific meta-analysis showed a genome-wide significant locus in East Asian individuals pointing to the same region (rs7059064, mapping within the GRIPAP1 gene; P = 6.2 × 10(-9); OR, 1.33; 95% CI, 1.21-1.46). Indeed, rs7059064 tags a unique linkage disequilibrium block including 7 genes: TIMM17B, PQBP1, PIM2, SLC35A2, OTUD5, KCND1, and GRIPAP1, as well as a superenhancer (GH0XJ048933 within OTUD5) targeting all these genes. GH0XJ048933 is also predicted to target FOXP3, the main T-regulatory cell lineage specification factor. Consistently, OTUD5 and FOXP3 RNA levels were up-regulated in PBC case patients (1.75- and 1.64-fold, respectively). CONCLUSIONS: This work represents the first comprehensive study, to our knowledge, of the chrX contribution to the genetics of an autoimmune liver disease and shows a novel PBC-related genome-wide significant locus.The article is available via Open Access. Click on the 'Additional link' above to access the full-text.Published version, accepted versio
    corecore