6,169 research outputs found
Sea surface and remotely sensed temperatures off Cape Mendocino, California
During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field
Ignition of thermally sensitive explosives between a contact surface and a shock
The dynamics of ignition between a contact surface and a shock wave is investigated using a
one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and
high-resolution finite activation energy numerical simulations are employed. Emphasis is on comparing
and contrasting the solutions with those of the ignition process between a piston and a shock,
considered previously. The large activation energy asymptotic solutions are found to be qualitatively
different from the piston driven shock case, in that thermal runaway first occurs ahead of
the contact surface, and both forward and backward moving reaction waves emerge. These waves
take the form of quasi-steady weak detonations that may later transition into strong detonation
waves. For the finite activation energies considered in the numerical simulations, the results are
qualitatively different to the asymptotic predictions in that no backward weak detonation wave
forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance
of the contact surface. The above conclusions are relevant to gas phase equation of state models.
However, when a large polytropic index more representative of condensed phase explosives is used,
the large activation energy asymptotic and finite activation energy numerical results are found to
be in quantitative agreement
Microstructural and compositional analysis of strontium-doped lead zirconate titanate thin films on gold-coated silicon substrates
This article discusses the results of transmission electron microscopy (TEM)-based characterization of strontium-doped lead zirconate titanate (PSZT) thin films. The thin films were deposited by radio frequency magnetron sputtering at 300°C on gold-coated silicon substrates, which used a 15 nm titanium adhesion layer between the 150 nm thick gold film and (100) silicon. The TEM analysis was carried out using a combination of high-resolution imaging, energy filtered imaging, energy dispersive X-ray (EDX) analysis, and hollow cone illumination. At the interface between the PSZT films and gold, an amorphous silicon-rich layer (about 4 nm thick) was observed, with the film composition remaining uniform otherwise. The films were found to be polycrystalline with a columnar structure perpendicular to the substrate. Interdiffusion between the bottom metal layers and silicon was observed and was confirmed using secondary ion mass spectrometry. This occurs due to the temperature of deposition (300°C) being close to the eutectic point of gold and silicon (363°C). The diffused regions in silicon were composed primarily of gold (analyzed by EDX) and were bounded by (111) silicon planes, highlighted by the triangular diffused regions observed in the two-dimensional TEM image
Thermodynamic entropy of a many body energy eigenstate
It is argued that a typical many body energy eigenstate has a well defined
thermodynamic entropy and that individual eigenstates possess thermodynamic
characteristics analogous to those of generic isolated systems. We examine
large systems with eigenstate energies equivalent to finite temperatures. When
quasi-static evolution of a system is adiabatic (in the quantum mechanical
sense), two coupled subsystems can transfer heat from one subsystem to another
yet remain in an energy eigenstate. To explicitly construct the entropy from
the wave function, degrees of freedom are divided into two unequal parts. It is
argued that the entanglement entropy between these two subsystems is the
thermodynamic entropy per degree of freedom for the smaller subsystem. This is
done by tracing over the larger subsystem to obtain a density matrix, and
calculating the diagonal and off-diagonal contributions to the entanglement
entropy.Comment: 18 page
Isopoll Maps and an Analysis of the Distribution of the Modern Pollen Rain, Eastern and Central Northern Canada
At 39 sites in eastern and central northern Canada, multiple samples of surface moss and lichens have been analyzed for their pollen content. Although pollen from 20 to 30 taxa were identified in the samples from each site, 8 pollen types (Alnus, Betula, Picea. Pinus, Salix, Gramineae, Cyperaceae and Ericaceae) usually comprise 90 to 100% of the pollen rain. We present isopoll maps of these taxa based on mean percentages of multiple samples from the 39 sites. The data are further analyzed by a number of statistical methods to determine whether there are specific pollen assemblages within this region and to what extent present day climatic parameters and floristic/vegetation zones correlate with pollen counts. Cluster analysis on raw data and on principal component scores yields six distinct pollen assemblages which are further examined by discriminant analysis. Pollen concentration maps for eastern Canada are also presented here and used as an aid in interpreting the percentage data.L'analyse pollinique d'un grand nombre d'échantillons de mousses et de lichens prélevés à la surface de 39 sites du centre et de l'est du Nord canadien a été faite. Même si on a pu identifier de 20 à 30 taxons dans les échantillons provenant de chacun des sites, 8 types polliniques (Alnus, Betula, Picea, Pinus, Salix, Gramineae, Cyperaceae, Ericaceae) se partagent habituellement entre 90 et 100% de la pluie pollinique. On présente ici les cartes isopolles de ces taxons, basées sur les pourcentages moyens des nombreux échantillons prélevés sur les 39 sites. L'analyse statistique des données qui a été faite avait pour but de dégager des assemblages polliniques distincts et de déterminer si les paramètres climatiques actuels ainsi que les régions floristiques pouvaient être mis en corrélation avec les sommes polliniques. Une analyse de grappes et de scores des composantes principales et des données brutes a permis de dégager 6 assemblages polliniques distincts qui ont fait l'objet d'une analyse discriminante. Les cartes de concentration pollinique de l'est du Canada, qui ont été dressées, ont servi à l'interprétation des données en pourcentage
"Pudding mold" band drives large thermopower in NaCoO
In the present study, we pin down the origin of the coexistence of the large
thermopower and the large conductivity in NaCoO. It is revealed that
not just the density of states (DOS), the effective mass, nor the band width,
but the peculiar {\it shape} of the band referred to as the "pudding
mold" type, which consists of a dispersive portion and a somewhat flat portion,
is playing an important role in this phenomenon. The present study provides a
new guiding principle for designing good thermoelectric materials.Comment: 5 page
Strong nonlocality: A trade-off between states and measurements
Measurements on entangled quantum states can produce outcomes that are
nonlocally correlated. But according to Tsirelson's theorem, there is a
quantitative limit on quantum nonlocality. It is interesting to explore what
would happen if Tsirelson's bound were violated. To this end, we consider a
model that allows arbitrary nonlocal correlations, colloquially referred to as
"box world". We show that while box world allows more highly entangled states
than quantum theory, measurements in box world are rather limited. As a
consequence there is no entanglement swapping, teleportation or dense coding.Comment: 11 pages, 2 figures, very minor change
Practical Implementations of Twirl Operations
Twirl operations, which convert impure singlet states into Werner states,
play an important role in many schemes for entanglement purification. In this
paper we describe strategies for implementing twirl operations, with an
emphasis on methods suitable for ensemble quantum information processors such
as nuclear magnetic resonance (NMR) quantum computers. We implement our twirl
operation on a general two-spin mixed state using liquid state NMR techniques,
demonstrating that we can obtain the singlet Werner state with high fidelity.Comment: 6 pages RevTex4 including 2 figures (fig 1 low quality to save space
The role of the automation development group in analytical research and development at Dupont Merck
Laboratory robotics has been firmly established in many non-QC
laboratories as a valuable tool for automating pharmaceutical
dosage form analysis. Often a single project or product line is used
to justify an initial robot purchase thus introducing robotics to the
laboratory for the first time. However, to gain widespread acceptance
within the laboratory and to justify further investment in robotics,
existing robots must be used to develop analyses for existing manual
methods as well as new projects beyond the scope off the original
purchase justification. The Automation Development Group in
Analytical Research and Development is a team of analysts
primarily devoted to developing new methods and adapting existing
methods for the robot. This team approach developed the expertise
and synergy necessary to significantly expand the contribution of
robotics to automation in the authors' laboratory
A violation of the uncertainty principle implies a violation of the second law of thermodynamics
Uncertainty relations state that there exist certain incompatible
measurements, to which the outcomes cannot be simultaneously predicted. While
the exact incompatibility of quantum measurements dictated by such uncertainty
relations can be inferred from the mathematical formalism of quantum theory,
the question remains whether there is any more fundamental reason for the
uncertainty relations to have this exact form. What, if any, would be the
operational consequences if we were able to go beyond any of these uncertainty
relations? We give a strong argument that justifies uncertainty relations in
quantum theory by showing that violating them implies that it is also possible
to violate the second law of thermodynamics. More precisely, we show that
violating the uncertainty relations in quantum mechanics leads to a
thermodynamic cycle with positive net work gain, which is very unlikely to
exist in nature.Comment: 8 pages, revte
- …