470 research outputs found

    ^{63}Cu, ^{35}Cl, and ^{1}H NMR in the S=1/2 Kagom\'e Lattice ZnCu_{3}(OH)_{6}Cl_{2}

    Full text link
    ZnCu3_{3}(OH)6_{6}Cl2_{2} (S=1/2S=1/2) is a promising new candidate for an ideal Kagom\'e Heisenberg antiferromagnet, because there is no magnetic phase transition down to ∼\sim50 mK. We investigated its local magnetic and lattice environments with NMR techniques. We demonstrate that the intrinsic local spin susceptibility {\it decreases} toward T=0, but that slow freezing of the lattice near ∼\sim50 K, presumably associated with OH bonds, contributes to a large increase of local spin susceptibility and its distribution. Spin dynamics near T=0 obey a power-law behavior in high magnetic fields.Comment: Phys. Rev. Lett. (in press

    Dynamic Scaling in the Susceptibility of the Spin-1\2 Kagome Lattice Antiferromagnet Herbertsmithite

    Full text link
    The spin-1/2 kagome lattice antiferromagnet herbertsmithite, ZnCu3_{3}(OH)6_{6}Cl2_{2}, is a candidate material for a quantum spin liquid ground state. We show that the magnetic response of this material displays an unusual scaling relation in both the bulk ac susceptibility and the low energy dynamic susceptibility as measured by inelastic neutron scattering. The quantity χTα\chi T^\alpha with α≃0.66\alpha \simeq 0.66 can be expressed as a universal function of H/TH/T or ω/T\omega/T. This scaling is discussed in relation to similar behavior seen in systems influenced by disorder or by the proximity to a quantum critical point.Comment: 5 pages, 3 figures v2: updated to match published version

    Spin Dynamics of the Spin-1/2 Kagome Lattice Antiferromagnet ZnCu_3(OH)_6Cl_2

    Full text link
    We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagome lattice antiferromagnet Zn Cu_3 (OH)_6 Cl_2. The susceptibility indicates a Curie-Weiss temperature of ~ -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law with exponent less than or equal to 1. These results suggest that an unusual spin-liquid state with essentially gapless excitations is realized in this kagome lattice system.Comment: 4 pages, 3 figures; v2: Updates to authors list and references; v3: Updated version; v4: Published versio

    The Herbertsmithite Hamiltonian: μ\muSR measurements on single crystals

    Get PDF
    We present transverse field muon spin rotation/relaxation measurements on single crystals of the spin-1/2 kagome antiferromagnet Herbertsmithite. We find that the spins are more easily polarized when the field is perpendicular to the kagome plane. We demonstrate that the difference in magnetization between the different directions cannot be accounted for by Dzyaloshinksii-Moriya type interactions alone, and that anisotropic axial interaction is present.Comment: 8 pages, 3 figures, accepted to JPCM special issue on geometrically frustrated magnetis

    Kondo physics in the algebraic spin liquid

    Full text link
    We study Kondo physics in the algebraic spin liquid, recently proposed to describe ZnCu3(OH)6Cl2ZnCu_{3}(OH)_{6}Cl_{2} [Phys. Rev. Lett. {\bf 98}, 117205 (2007)]. Although spin dynamics of the algebraic spin liquid is described by massless Dirac fermions, this problem differs from the Pseudogap Kondo model, because the bulk physics in the algebraic spin liquid is governed by an interacting fixed point where well-defined quasiparticle excitations are not allowed. Considering an effective bulk model characterized by an anomalous critical exponent, we derive an effective impurity action in the slave-boson context. Performing the large-NσN_{\sigma} analysis with a spin index NσN_{\sigma}, we find an impurity quantum phase transition from a decoupled local-moment state to a Kondo-screened phase. We evaluate the impurity spin susceptibility and specific heat coefficient at zero temperature, and find that such responses follow power-law dependencies due to the anomalous exponent of the algebraic spin liquid. Our main finding is that the Wilson's ratio for the magnetic impurity depends strongly on the critical exponent in the zero temperature limit. We propose that the Wilson's ratio for the magnetic impurity may be one possible probe to reveal criticality of the bulk system

    Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet

    Full text link
    The search for the resonating valence bond (RVB) state continues to underpin many areas of condensed matter research. The RVB is made from the dimerisation of spins on different sites into fluctuating singlets, and was proposed by Anderson to be the reference state from which the transition to BCS superconductivity occurs. Little is known about the state experimentally, due to the scarcity of model materials. Theoretical work has put forward the S = 1/2 kagome antiferromagnet (KAFM) as a good candidate for the realization of the RVB state. In this paper we introduce a new model system, the S = 1/2 KAFM Kapellasite, Cu3Zn(OH)6Cl2. We show that its crystal structure is a good approximation to a 2-dimensional kagome antiferromagnet and that susceptibility data indicate a collapse of the magnetic moment below T = 25 K that is compatible with the spins condensing into the non-magnetic RVB state.Comment: Communication, 3 pages, 3 figure

    A Cu2+ (S = 1/2) Kagom\'e Antiferromagnet: MgxCu4-x(OH)6Cl2

    Full text link
    Spin-frustrated systems are one avenue for inducing macroscopic quantum states in materials. However, experimental realization of this goal has been difficult because of the lack of simple materials and, if available, the separation of the unusual magnetic properties arising from exotic magnetic states from behavior associated with chemical disorder, such as site mixing. Here we report the synthesis and magnetic properties of a new series of magnetically frustrated materials, MgxCu4-x(OH)6Cl2. Because of the substantially different ligand-field chemistry of Mg2+ and Cu2+, site disorder within the kagom\'e layers is minimized, as directly measured by X-ray diffraction. Our results reveal that many of the properties of these materials and related systems are not due to disorder of the magnetic lattice but rather reflect an unusual ground state.Comment: Accepted for publication in J. Am. Chem. Soc

    Ceratoscopelus maderensis : pecular sound-scattering layer identified with this myctophid fish

    Get PDF
    Reprint. Science, vol. 160, no. 3831, 1968, pp. 991-993. Originally issued as Reference No. 68-58, series later renamed WHOI-.A sound- scattering layer, composed of discrete hyperbolic echo-sequences and apparently restricted to the Slope Water region of the western North Atlantic, has been identified from the Deep Submergence Research Vehicle ALVIN with schools of the myctophid fish Ceratoscopelus maderensis. By diving into the layer and using ALVIN's echo-ranging sonar, we approached and visually identified the sound scatterers. The number of echo sequences observed with the surface echo-sounder (1 /23. 76 x 105 cubic meters of water) checked roughly with the number of sonar targets observed from the submarine (1/7. 45 x 105 cubic meters) . The fish schools appeared to be 5 to 10 meters thick, 10 to 100 meters in diameter, and on centers 100 to 200 meters apart. Density within schools was estimated at 10 to 15 fish per cubic meter.Supported in part by contracts Nonr-3484(00) and Nonr-4029(00) and by NSF grant GB-4431
    • …
    corecore