Spin-frustrated systems are one avenue for inducing macroscopic quantum
states in materials. However, experimental realization of this goal has been
difficult because of the lack of simple materials and, if available, the
separation of the unusual magnetic properties arising from exotic magnetic
states from behavior associated with chemical disorder, such as site mixing.
Here we report the synthesis and magnetic properties of a new series of
magnetically frustrated materials, MgxCu4-x(OH)6Cl2. Because of the
substantially different ligand-field chemistry of Mg2+ and Cu2+, site disorder
within the kagom\'e layers is minimized, as directly measured by X-ray
diffraction. Our results reveal that many of the properties of these materials
and related systems are not due to disorder of the magnetic lattice but rather
reflect an unusual ground state.Comment: Accepted for publication in J. Am. Chem. Soc