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The Herbertsmithite Hamiltonian: µSR

measurements on single crystals
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Abstract. We present transverse field muon spin rotation/relaxation measurements

on single crystals of the spin-1/2 kagome antiferromagnet Herbertsmithite. We find

that the spins are more easily polarized when the field is perpendicular to the kagome

plane. We demonstrate that the difference in magnetization between the different

directions cannot be accounted for by Dzyaloshinksii-Moriya type interactions alone,

and that anisotropic axial interaction is present.
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Figure 1. (Color online) The temperature dependence of (a) the muon frequency

shift K (errors are smaller than the symbol) and (b) relaxation rate 1/T ∗

2 , for two

orientations of the crystals (filled symbols for ~H ‖ ĉ, hollow for ~H ⊥ ĉ). The solid line

represent a Curie-Weiss type law. The inset shows a typical crystal.

After many years of searching for a good model compound for the spin-1/2

antiferromagnetic kagome magnet, it seems that the community is converging on

Herbertsmithite, ZnCu3(OH)6Cl2, as the system closest to ideal. Recently, a major

scepticism was removed when it was shown that the Zn ions in single crystals do

not reside in the kagome plane [1]. However, it is not yet clear what exactly is the

Hamiltonian controlling the behavior of this system. Are the interactions isotropic or

not? Is the Dzyaloshinskii Moriya (DM) interaction [2] relevant?

To address these questions the research must advance to single crystals. These

are available, but their size is still small, limiting the experiments available for them.

The high transverse field muon spin rotation (µSR) technique is capable of overcoming

this size problem, since the high field helps focus the muon beam onto the small

crystals. Here we report such measurements. We find that the magnetic response

of Herbertsmithite is very anisotropic. We then analyze the magnetization data and

show that a non-isotropic diagonal interaction must be present in ZnCu3(OH)6Cl2.

Pioneering measurements on Herbertsmithite indicated a Curie-Weiss (CW)

temperature θ = −314 K and a broad deviation from the high-temperature CW behavior

starting at T ≈ 75 K. The nearest-neighbor super-exchange interaction leads to a

coupling of J ≈ 190 K [3]. Extensive measurements on powder samples have found no
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Figure 2. (Color online) The temperature dependence of the Fourier transform of the

µSR asymmetry data in a field of 4 T. (a) The spectra obtained when the field ~H is

parallel to the ĉ-axis, which is normal to the mosaic (and thus to the kagome plane)

(b) The spectra obtained when the field ~H is perpendicular to the ĉ-axis.

evidence for long-range magnetic ordering or spin freezing down to 20 mK [4, 5], or a gap

to excitations [6, 7]. A recent Raman spectroscopic study on single crystals gives further

evidence for a gapless spin liquid state [8]. Analysis of electron spin resonance spectra

using DM interactions only suggests a sizable DM vector of Dz = 15 K [9]. Nuclear

magnetic resonance spectra, analyzed again using DM interactions only, but with the

addition of defects arising from site-exchange, claimed 11 ≤ D ≤ 19 K [10]. However,

magnetization measurements on oriented powders discovered a dramatic difference in

the magnetization between different directions [11] and demonstrated that DM is not the

only perturbation to the Heisenberg Hamiltonian. The measurements performed here

on single crystals are a clear improvement on the experiments with oriented powders.

The single crystals were measured by X-ray diffraction using a Bruker D8 AXS

single crystal diffractometer in order to reveal their crystallographic axes. Subsequently

a mosaic of 6 single crystals was created. In the mosaic, the ĉ axis is off by few degrees

between crystals, and we did not manage to keep a particular orientation of the a-b

plane. One face of a crystals is shown in the inset of Fig. 1. In general, all faces had

similar size and the crystals shape is closer to a cube rather than a slab or a needle. The

dark lines seen on the crystal are likely cracks or uneven steps, however x-ray refinement

do find a single phase. The ĉ axis of the crystal is the direction perpendicular to the
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kagome plane.

The mosaic, held by a thin Mylar tape, was placed onto a low-background sample

holder on the M15 surface muon channel at TRIUMF, Canada. Transverse field (TF)

µSR spectra, where the field is applied perpendicular to the muon spin direction, were

gathered in the T range between 2 K and 250 K in a constant field of µ0H = 4 T.

Thereafter, the mosaic was rotated by 90◦ to probe the second orientation of the crystals.

A TF-µSR experiment is a sensitive probe of the magnetization M of the specimen

through the precession frequency of the muon spin. The frequency shift Kαα(T ) for a

field in the α direction is proportional to Mα/Hα defined here as χαα(T ). However, it

should be noted that the ratio of shifts in different directions is not the same as the ratio

of susceptibilities in those directions, since the shift is also determined by the muon-spin

to electronic-spin coupling. This coupling has a significant dipolar character.

Figure 2 depicts the Fourier transforms of the µSR data obtained at T ≤ 40 K.

At the highest T (not shown) a symmetric peak at 542.1 MHz is seen for both field

orientations. Below 150 K the peak becomes asymmetric (not shown). Below 40 K, two

clear peaks show up in the ~H ‖ ĉ measurement [panel (a)]. This happens only at 20 K

in the ~H ⊥ ĉ measurement [panel (b)]. In both cases, the emerging lower intensity peak

appears below 542.1 MHz. As the temperature is lowered, the low intensity peak in

the ~H ‖ ĉ spectrum shifts to even lower frequencies and broadens. In contrast, the low

intensity peak for ~H ⊥ ĉ smears out quickly, and is unseen at 2 K. The high intensity

peak does not shift in either case. The solid vertical lines help assess the shift. The low

frequency peaks can be assigned to muons that are influenced by the magnetic kagome

planes, since such a wipe out of the signal is typical of slowing down of spin fluctuations,

which is expected as T decreases.

Raw data in the time domain for the T = 2 K and T = 250 K are shown in Fig.

3. These data are presented in a rotating reference frame of 539 MHz. The vertical

line indicates that in the ~H ⊥ ĉ case [panel (a)] no change in the rotation frequency is

detected and only an increase in the relaxation is observed. In the ~H ‖ ĉ case [panel

(b)] the frequency does shifts and the relaxation increases. The reason for the apparent

increase in the frequency in Fig. 3b is that in the time domain one sees the mean

frequency. In the ~H ‖ ĉ case the mean frequency shifts upward since the low frequency

peak diminishes faster than the high frequency peak. This is not the case for ~H ⊥ ĉ.

In light of the Fourier transform the function

ATF(t) = A‖,⊥ exp(−
√
t/T ∗

2‖,⊥) cos(ω‖,⊥t+ ϕ‖,⊥)

+ A2 exp(−(σt)2/2) cos(ω2t + ϕ2) (1)

is fitted to these data globally. The fit is also shown in Fig. 3 using solid lines. The

two terms represent an oscillating signal relaxing as a root exponential, originating from

the kagome planes, and a Gaussian-relaxing signal stemming from a paramagnetic site.

A, T ∗
2 , σ and ω are the corresponding Asymmetry, relaxation times, relaxation rate

and frequencies for each peak in each geometry, respectively. The total asymmetry is

a common parameter in the global fit. The ratio A‖,⊥/A2 = 3(1) indicates that most
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Figure 3. (Color online) µSR data in the time domain using a rotating reference

frame of 539 MHz, for the two different field directions and two different temperatures:

250 and 2 K. (a) ~H ⊥ ĉ; no shift is detected between the two temperatures, but an

increase in relaxation is observed. (b) ~H ‖ ĉ; a shift in the frequency and increase in

relaxation are observed. The solid lines are fits of Eq. 1 to the data. The solid vertical

line show when a shift is present and when it is not.

muons sense the kagome planes. The very fast relaxation at early times makes the data

in the time domain look as if some asymmetry is lost. This translates to a reduced

Fourier amplitude in Fig. 2 upon cooling. A fit in the time domain with a fixed ATF(0)

for all temperatures overcomes this problem.

In Fig. 1(a) we plot the frequency shift, K‖,⊥ = (ω2−ω‖,⊥)/ω2, versus temperature.

The shifts K‖ andK⊥ behave very differently with decreasing temperature. K‖ increases

rapidly with decreasing T below 100 K and reaches 800 ppm at 2 K. In contrast, K⊥

fluctuates and is very small. The behavior of K⊥ is not understood at the moment;

however, the temperature average K⊥(T ) = −30(50) ppm hints that these might be

muon site fluctuations. K‖ is an order of magnitude larger than the macroscopic

suscetibility χ at the same applied field as measured by a SQUID [12]. The fact that

K‖ ∼ 4πχ is, a priori, a cause for concern. It might indicate that the muons are working

as a magnetometer and that the difference between K‖ and K⊥ is due to differences in

the sample’s demagnetization factor D in different directions. However, the two lines,

clearly resolved at 20 K for each direction, indicates that the muons in the site with

a shift is sensing the local susceptibility. If the muons were only experiencing Dχ, we

would not see different behavior at different sites. Moreover, we do not expect differences

in D for different directions due to the crystals shape. Thus, the behavior of K⊥ and

K‖ indicates a very small spin response when the field is in the kagome plane compared
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to a field perpendicular to this plane.

Since the temperature dependence of the shift is proportional to the local

susceptibility these results indicates that Herbertsmithite has an easy axis. We fit

K‖(T ) to a CW type law and find θcw = −35 K. We also fit our K‖(T ) data to a CW

law with an offset. We examined a free offset and an offset set by the K⊥ data. We

found that θcw either does not change or becomes more negative. We will continue

our discussion using the minimal |θcw| since it is sufficient for the conclusions of this

paper. This θcw is different from the one obtained by a SQUID on powders. However,

in Herbertsmithite different probes gave different behavior [6, 7, 11, 13, 9] upon cooling

so having a new CW is not so surprising.

Finally, in Fig. 1(b) we present the relaxation rate 1/T ∗
2‖,⊥. The relaxation in both

directions is flat and small down to 70 K and then it increases. However, at low T ,

the relaxation is very different for the two directions. Since 1/T ∗
2 is also proportional

to the susceptibility [14] the relaxation measurement indicate, again, that the system is

anisotropic.

In order to understand this behavior we turn to an anisotropic Heisenberg

Hamiltonian with a DM interaction which we write as

H =
∑

i

gµB
~Si · ~H−

∑

j 6=i

J⊥
~S⊥
i · ~S⊥

j + JzS
z
i S

z
j +

~Dij · (~Sj × ~Si) , (2)

where ~Dij are the DM vectors and the second sum is over neighboring spins (not bonds).

This Hamiltonian can be written as H = gµB

∑
i
~Si · ~H

eff
i , where the effective field is

~Heff
i = ~H−

1

gµB

(
∑

j 6=i

J̃~Sj + ~Dij × ~Sj) (3)

and the anisotropic diagonal coupling is given by

J̃ =




J⊥ 0 0

0 J⊥ 0

0 0 Jz


 . (4)

When expressing ~Heff one has to be careful about the convention of ~Dij [2]. We continue

with the mean-field approximation (~S → − ~M/gµB). In principle the kagome unit cell

has three different atoms and we should allow a different ~M for each site. However, we

are interested in the high temperature limit where it is reasonable to assume that the

magnetization of all ions is the same. We will check this assumption at the end of the

calculation. Thus

~Heff
i = ~H+

Z

(gµB)2

(
J̃ ~M+ ~Di × ~M

)
, (5)

where ~Di = 1

Z

∑
j
~Dij and Z is the number of near neighbors. The magnetization

is given by a self consistent solution of the equation ~Mi = C
T
~Heff

i where C =

(gµB)
2 S(S + 1)/(3kB) is the Curie constant. The solution is given by

χ⊥⊥
i = C

(T − θ⊥)(T − θz) +D⊥′2
i

(T − θz)(T − θ⊥)2 + T ~D′2
i − ~D⊥′2

i θ⊥ −Dz′2
i θz

,
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χzz
i = C

(T − θ⊥)
2 +Dz′2

i

(T − θz)(T − θ⊥)2 + T ~D′2
i − ~D⊥′2

i θ⊥ −Dz′2
i θz

, (6)

where

~Dz,⊥′ =
CZ

(gµB)2
~Dz,⊥ .

Here ~Dz,⊥ are the DM components in the z direction and in the kagome plane,

respectively.

It is simple to see that there are three different ~Di in the lattice. Therefore, χzz
i

and χ⊥⊥
i or ~Mi must be site dependent, unless we are in the limit of high temperatures,

(T − θ)2 ≫ (Dz,⊥′
i )2 where

χzz =
C

(T − θz)
and χ⊥⊥ =

C

T− θ⊥
. (7)

In this case the DM interaction does not affect the CW temperatures which are

determined from the high T data. In our experiment at T = 65 K, T − θcw = 100 K

and Dij is estimated to be on the order of 10 K [9]. Therefore, (T − θcw)
2 is two order

of magnitude larger than (Dz,⊥′
i )2, and the high temperature limit is valid. Since the

shifts, hence the susceptibilities in the two directions are different at T = 65 K we

conclude that θz 6= θ⊥, that J must have axial anisotropy, and that DM interaction

cannot explain the anisotropy in the measurements. This does not mean that the DM

interaction, which is allowed by the symmetry of the kagome lattice, is not present in

addition to the axial anisotropy [15].

In conclusions, µSR measurements were performed on single crystals of

Herbertsmithite. We find no clear signature of a magnetic transition down to T <

10−2J , as was found for powders (down to 10−4J). Anisotropic spin susceptibility with

an easy axis is revealed. By mean-field approximations, we show that this phenomenon

cannot be due to DM interactions alone, and an anisotropic super-exchange J is needed.

Our data calls for more work on larger crystals where one can avoid using a mosaic of

crystal and the anisotropy can be measured more accurately. Such crystal are becoming

available. It will also be useful to have theoretical work on the high temperature behavior

of the magnetization in different directions, using Eq. 2 and more accurate methods than

mean field.
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