3,007 research outputs found

    Effect of ancilla's structure on quantum error correction using the 7-qubit Calderbank-Shor-Steane code

    Full text link
    In this work we discuss the ability of different types of ancillas to control the decoherence of a qubit interacting with an environment. The error is introduced into the numerical simulation via a depolarizing isotropic channel. After the correction we calculate the fidelity as a quality criterion for the qubit recovered. We observe that a recovery method with a three-qubit ancilla provides reasonable good results bearing in mind its economy. If we want to go further, we have to use fault-tolerant ancillas with a high degree of parallelism, even if this condition implies introducing new ancilla verification qubits.Comment: 24 pages, 10 Figures included. Accepted in Phys. Rev. A 200

    Towards practical classical processing for the surface code: timing analysis

    Full text link
    Topological quantum error correction codes have high thresholds and are well suited to physical implementation. The minimum weight perfect matching algorithm can be used to efficiently handle errors in such codes. We perform a timing analysis of our current implementation of the minimum weight perfect matching algorithm. Our implementation performs the classical processing associated with an nxn lattice of qubits realizing a square surface code storing a single logical qubit of information in a fault-tolerant manner. We empirically demonstrate that our implementation requires only O(n^2) average time per round of error correction for code distances ranging from 4 to 512 and a range of depolarizing error rates. We also describe tests we have performed to verify that it always obtains a true minimum weight perfect matching.Comment: 13 pages, 13 figures, version accepted for publicatio

    Optimum Quantum Error Recovery using Semidefinite Programming

    Get PDF
    Quantum error correction (QEC) is an essential element of physical quantum information processing systems. Most QEC efforts focus on extending classical error correction schemes to the quantum regime. The input to a noisy system is embedded in a coded subspace, and error recovery is performed via an operation designed to perfectly correct for a set of errors, presumably a large subset of the physical noise process. In this paper, we examine the choice of recovery operation. Rather than seeking perfect correction on a subset of errors, we seek a recovery operation to maximize the entanglement fidelity for a given input state and noise model. In this way, the recovery operation is optimum for the given encoding and noise process. This optimization is shown to be calculable via a semidefinite program (SDP), a well-established form of convex optimization with efficient algorithms for its solution. The error recovery operation may also be interpreted as a combining operation following a quantum spreading channel, thus providing a quantum analogy to the classical diversity combining operation.Comment: 7 pages, 3 figure

    Classical Rules in Quantum Games

    Full text link
    We consider two aspects of quantum game theory: the extent to which the quantum solution solves the original classical game, and to what extent the new solution can be obtained in a classical model.Comment: The previous title, "Quantum games are no fun (yet)", was too whimsical for Physical Review. This is a comment on most, but not all, papers on quantum game theor

    Magnetic qubits as hardware for quantum computers

    Full text link
    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states |0> and |1> are the ground and first excited spin states Sz = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, |0>, and antisymmetric, |1>, combinations of the two-fold degenerate ground state Sz = +- S. In each case the temperature of operation must be low compared to the energy gap, \Delta, between the states |0> and |1>. The gap \Delta in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware.Comment: 17 pages, 3 figure
    • …
    corecore