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As well designs become increasingly complicated, a complete under-

standing of drillstring vibrations is key to maximize drilling efficiency, to reduce

drillstring dysfunction and to minimize drillstring, tool, and borehole damage.

Torque and drag models exist that seek to quantify the effects of borehole

inclination and tortuosity on static friction along the drillstring; however, the

effects on dynamic friction remains poorly understood. This dissertation be-

gins with a review of the past fifty years of work on drillstring dynamics models,

an overview of the proposed control strategies and a summary deployed vibra-

tion mitigation applications within the drilling industry. Derivations from first

principles of a series of computationally efficient axial and torsional drillstring

models in both the frequency and time domains are then presented and verified

with field data.
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The transfer matrix approach is used to predict the severity of axial

vibrations along the drillstring and is verified using a series of case studies us-

ing field data. Harmonic axial vibrations within drillstrings are either induced

intentionally, in the case of axial oscillation tools midway along the drillstring,

or unintentional, in the case of bit bounce. Two case studies of bit bounce

are first evaluated to ensure model validity for a harmonic excitation at a the

bit and the model is found to accurately predict bit bounce based on surface

rotation rates. Induced axial oscillations, generated by axial oscillation tools,

are then investigated to quantify friction reduction and drilling efficiency im-

provements. Optimal placement is found to depend on wellbore geometry, but

is usually restricted to periodic regions of the drillstring. These optimizations

are then verified using field trials and suggest that improved placement can

result in 20% or more reduction in friction along the drillstring.

Two applications of torsional drillstring vibrations are then investi-

gated – stick slip mitigation and drillstring imaging. The time domain form

of the torsional drillstring model is used first to evaluate the effectiveness of

three types of top drive controllers – stiff controllers, tuned PI controllers and

impedance matching controllers – in mitigating stick slip oscillations. Then,

the transfer matrix method is applied to evaluate the effect of wellbore geom-

etry on drillstring mobility to conclude that higher order modes of stick slip

may become dominant in non-vertical wellbores. The feasibility of drillstring

imaging using torsional signals from surface is then investigated to identify

inputs and methods that show promise in three setups of varying complex-
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ity – a hanging beam, a laboratory drillstring model and a drilling rig. Two

techniques show promise – white noise injection and model fitting of a step

response – in identifying larger features, including drillstring length and BHA

location. However, low sampling frequencies and low bandwidth inputs reduce

the ability to image small features such as friction points along the wellpath.
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Chapter 1

Introduction

The upstream oil and gas industry is primarily concerned with the

exploration for and extraction of hydrocarbons from formations deep below

the earth’s surface. Hydrocarbon reservoirs are typically found between 2,000

and 20,000 feet vertical depth, but newer discoveries in places like the Gulf

of Mexico have also occurred at depths in excess of 30,000 feet (van Oort

et al., 2013) or required extended reach wells with horizontal displacements

over 30,000 feet (Allen et al., 1997). Drilling for these hydrocarbons involves

the transmission of cutting force through miles of slender drillpipe – from the

drilling rig at the surface to the drill bit, as shown in Figure 1.1. Drillstrings are

composed of various diameters of drillpipe that snake along an often irregular

and curving wellbore drilled through formations with heterogeneous lithology.

Control inputs are generally limited to surface rotational speed, rotary torque,

axial loading of the string and mud flow rate. Effective torque-on-bit and

weight-on-bit transmission is key to efficient drilling but is greatly influenced

by the dynamics of the moving drillstring in the borehole and by the formation

properties themselves. Understanding drillstring dynamics has been key to

improving drilling efficiency.
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hookload ensures that the drill pipe is kept in tension to avoid
buckling. The graph at the left of Fig. 1 shows the axial force as a
function of the position along the borehole. While the drill pipes
run in tension, the BHA is partly loaded in compression. The
combined loading of the BHA in axial and torsional direction can
cause buckling of the BHA. Buckling of the BHA is prevented by
the large wall thickness of the drill collars and the placement of
stabilizers. An ideal stabilizer would provide a ‘‘hinge’’ boundary
condition for the lateral movements of the drillstring. The critical
buckling load rises due to the additional supports of the stabiliz-
ers.
Torque is transmitted from the rotary table to the drillstring.

The torque required to drive the bit is referred to as the Torque On
Bit !TOB".
A fluid called mud is pumped down through the hollow drill-

string, through nozzles in the bit and returns to the surface through
the annulus between the drillstring and the borehole wall. The
mud compensates the pressure in the rock, lubricates and removes
the rock cuttings from the hole.
The drilling process is steered by the hookload, the rotary table

speed at the surface !the angular velocity of the top end of the
drillstring" and the flow rate of the mud. The downward speed of
the drillstring gives an accurate measure of the rate of penetration
!ROP". The standpipe pressure !the pressure in the flowline at the
top of the drillstring" indicates the total pressure drop in the drill-
string and annulus. The ROP and standpipe pressure indicate the
progress and state of the drilling process which are interpreted by
drilling engineers to adjust the steering parameters.
The drillstring undergoes various types of vibration during

drilling #6$

• Axial !longitudinal" vibrations, mostly due to the interaction
between drilling bit and the hole bottom. In its extreme form,
when the bit can lose contact with the hole bottom, this vibration
is called ‘‘bitbounce’’.
• Bending !lateral" vibrations, often caused by pipe eccentric-

ity, leading to centripetal forces during rotation, named as drill-
string whirl:

- forward whirl: the rotation of a deflected drill collar section
around the borehole axis in the same direction as it rotates around
its axis.
- backward whirl: a rolling motion of the drill collar or the

stabilizer over the borehole wall in opposite direction as it rotates
around its axis.
• Torsional !rotational" vibrations, caused by nonlinear interac-

tion between the bit and the rock or the drillstring with the bore-
hole wall, named as
- stick-slip vibration: the torsional vibration of the drillstring

characterized by alternating stops !during which the BHA sticks to
the borehole" and intervals of large angular velocity of the BHA.
• Hydraulic vibrations in the circulation system, stemming

from pump pulsations.
These vibrations are to some degree coupled: e.g. the interaction
between TOB and WOB will link the axial vibrations to the tor-
sional vibrations.

3 Downhole Measurements
In the late 1980s the Institut Français du Pétrole designed the

Trafor system, a research tool to measure downhole and surface
data to improve knowledge about drillstring dynamics. The Trafor
system consists of a downhole measurement device, called the
Télévigile, and a surface measurement device known as the Sur-
vigile. The signals of the Télévigile and Survigile are gathered by
a computer and synchronized. The great merit of the Trafor sys-
tem is the ability to measure both downhole and surface data at
real-time. Pavone and Desplans #12$ give a description of the
Trafor system. The Télévigile is basically a tube much like a nor-
mal drill collar, but equipped with sensors that measure Weight
On Bit, downhole torque, downhole accelerations in three or-
thogonal directions and downhole bending moments in two direc-
tions. Three magnetic field sensors, known as magnetometers,
measure a projection of the earth magnetic field in three orthogo-
nal directions co-rotating with the Télévigile.
The measurements reported in this section were recorded

at a full-scale research rig. The well is nearly vertical and about

Fig. 1 Drilling rig
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Figure 1.1: A traditional drilling rig and drillstring setup, as shown in (Leine
et al., 2002).

This dissertation seeks to first survey the current state of drillstring

dynamics modeling and of mitigation systems currently deployed in the field.

Then a suite of drillstring vibration models based upon the damped wave equa-

tion are derived from base principles for both axial and torsional vibrations in

both the frequency and time domains. Frequency domain models are imple-

mented using the transfer matrix approach while the time domain solutions

are implemented either through the use of finite difference models or through

state-space models. These models are then applied to a series of problems,
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including the characterization of the axial dynamic behavior of the drillstring

subject to a harmonic input, an analysis of the effectiveness of surface con-

trol strategies, and a feasibility study of drillstring imaging using torsional

reflectances. However, it is important to first understand the different types

of drillstring vibrations and their effects on operations.

1.1 Categories of Drillstring Vibration

Sensing of drilling dysfunction (such as undesired vibrations) is typi-

cally limited to real-time surface data at a relatively low frequency (typically

0.5 - 1 Hz) but is occasionally available at higher sampling frequencies within

particular systems, such as top drive control systems. Limited real-time down-

hole data is generally available but is primarily used for well steering opera-

tions, i.e. deviating the well from vertical towards a specific target zone. Cur-

rent communication methods, relying on mud-pulse telemetry (Bonner et al.,

1992), have limited bandwidth and potentially significant time delays. New

technologies, such as wired drillpipe, have been deployed and provide high-

frequency downhole data (Briscoe et al., 2013). Wired drillpipe now allows for

the incorporation of downhole vibration sensors that can accurately charac-

terize harmful excitations of the drillstring in real-time, allowing for real-time

automated control but remains costly. These sensors are also widely deployed

as parts of downhole dynamics recording devices, but this data can only be

analyzed after the well has been drilled and the tool retrieved.
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Classes of drillstring vibrations are typically characterized in industry

by the resulting physical behaviors of the system and are related to three

vibration modes. Torsional vibrations often manifest as stick-slip events.

Lateral vibrations are typically associated with whirl. Axial vibrations occur

due to bit-rock interaction and resulting bit-bounce, or from induced axial

oscillations in efforts to reduce friction. Each of these is described in detail

below.

SPE 57555 Cost Savings Through an Integrated Approach to Drillstring Vibration Control 5

Bit Type Formation type WOB
(tonnes)

RPM ROP with
STRS off

(m/hr)

ROP with
STRS on

(m/hr)

% ROP
increase

DS53H(PDC) Chalk 14 65 10.5 12.7 21 %
EHP51H (Tri-cone) Chalk/Chert 25 90 1.5 2.5 67 %
EHP51H (Tri-cone) Chalk/Chert 20 110 1.1 1.8 64 %
R535 (PDC) Claystone 5 90 13.8 13.8 0 %
R535 (PDC) Marl 5 100 11.6 22.2 91 %

Table 1: Appl ication of STRS in an area known for stick-slip problems resulted in a significant drop in ROP. Moreover, the
occurrence of large magnitude stick-slip drill string torsional oscillations while rotary drilling, when the STRS was
turned off, resulted in the loss of the MWD telemetry signal in the mud stream. The elimination of stick-slip when
STRS was turned on, restored the MWD signal.

time [s]
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at surface downhole

Figure 1: The driller observes a rotary speed varying between 45 and 65 RPM. He cannot observe the violent speed
fluctuations of the bit. Top speeds are reached of 3-5 times nominal speed, alternating with periods of 2-5 s during
which the bit comes to a complete standstill. During these periods the rotary table continues rotation at an average
of  55 RPM, thus causing twist fluctuations in the drillstring of some 2-5 turns on top of the static twist. The record
was measured in 1984 in McAllen, Texas, USA in a 2000 m deep well.

Figure 1.2: Typical stick-slip behavior, both at the surface and the bit, as
shown in (Kriesels et al., 1999).

1.1.1 Stick-slip

Stick-slip events are visible at the surface as low frequency torque fluc-

tuations (on the order of 2 – 10 seconds, an example is shown in Fig 1.2)

and are caused by non-linear frictional forces at the bit or at the stabilizers

coupled with insufficient cutting force, either through insufficient torque or
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excessive weight-on-bit. A self-exciting limit cycle then occurs in the bit ro-

tation – bit torque phase plane. When insufficient torque is applied at the

bit to cut through the rock at a given weight-on-bit, the bit stalls and ceases

rotation. As surface rotation continues, the drillstring will continue to twist

and “store torque”, which will subsequently be transferred to the bit. Once

sufficient torque is available, the bit releases violently and rotates faster than

the surface rotation until the additional twist in the drillstring is removed and

torque at bit again falls below the cutting limit, stalling the bit once more. The

cycle then repeats (Kriesels et al., 1999). High frequency torsional oscillations

(HFTO) within the bottom hole assembly (BHA) have also been observed in

field data, but consensus on their existence – an argument has been put forth

that these oscillations are simply an artifact of sensor position – has not been

reached and are thus outside the scope of this dissertation (Oueslati et al.,

2013a; Baumgartner and van Oort, 2014; Jain et al., 2014; Hohl et al., 2016).

1.1.2 Lateral vibrations

Lateral, sometimes referred to as longitudinal, vibrations of rotating

shafts typically manifest as a migration of the axis of rotation of the drill-

string within the confines of a wellbore. This is referred to as drillstring whirl.

Whirl is damaging to the drillstring and may cause failure or wear of bits

and other bottom-hole assembly components (i.e. motors, monitoring-while-

drilling/logging-while-drilling tools etc.) through prolonged and often violent

contact with the wellbore wall. Forward whirl occurs when the drillstring
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Figure 1.3: Drillstring whirl. (A) Ideal conditions, where the drillstring is
centered in the borehole and is rotating clockwise. (B) Forward whirl, where
motion of the drillstring around the wellbore and pipe rotation are both clock-
wise. (C) Backward whirl, where motion of the drillstring around the wellbore
is counterclockwise. (D) Chaotic whirl where motion around the wellbore is
erratic.

rotation and direction of axis rotation around the wellbore are prograde. Lab-

oratory experiments (Aldred and Sheppard, 1992; Liao et al., 2012) and field

experience (Brett et al., 1990; Vandiver et al., 1990) have shown that in for-

ward whirl, contact occurs between the same spot on the borehole and the

drillstring, leading to excessive wear (of the borehole and/or exposed drill-

6



string components) if the vibration is not mitigated. Backward whirl occurs

when the two rotations are retrograde and there is no observed pattern in

drillstring – wellbore contact. Chaotic whirl is neither prograde nor retrograde

but involves erratic movement of the axis of rotation within the wellbore with

high shock loads. Detection of whirl using low frequency surface sensors is ex-

tremely difficult due to high dampening of lateral drillstring vibrations in the

borehole through interaction with the viscous drilling fluid, different drillstring

elements, the borehole walls and harmonic modes (Swanson et al., 2005).

1.1.3 Axial vibrations

Axial vibrations of the drillstring are either random or harmonic and are

either caused by bit-rock interaction or induced by downhole tools. During

the rock cutting process, random axial motion originates from the bit and

propagates through the drillstring and may be detected at surface in some cases

as noise in the hookload measurement. This noise may excite natural modes

of the drillstring to create standing waves, and in the case of tricone bites,

developed into a tri-lobbed pattern which may be detected as a harmonic axial

oscillation at three times rotary speed. However, in many cases axial vibrations

of the drillstring are often difficult to detect on surface due to attenuation

within the drillstring, especially in deviated wells where extended sections

of the drillstring are supported by the borehole wall. Even when downhole

motors drive the bit (and thus the drillstring does not rotate) axial vibration

can be induced by downhole tools, such as axial oscillation tools (Barton et al.,
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2011a), which are deployed in an attempt to reduce friction while sliding to

improve toolface control and transmission of torque-on-bit and weight-on-bit.

There are industry studies showing the benefits of incorporating oscillation

tools into bottom hole assemblies (Alali and Barton, 2011; Alali et al., 2012),

but since these tools cannot be deactivated once in the hole, they continually

induce axial vibration even while rotating the drillstring.

1.2 Prior Work

Current drillstring models can be characterized into two basic cate-

gories: soft-string and stiff-string models. A soft-string model is a lumped

mass model that assumes continuous drillstring-borehole contact. A stiff-string

model explicitly calculates bending and may assume point wise contact with

the borehole. A survey by Janwadkar in 2006 found that drill collars and

heavyweight drillpipe obey the stiff string model, while ordinary drillpipe and

coil tubing are well approximated by the soft string model (Janwadkar et al.,

2006). Soft-string models are typically simpler and less computationally in-

tensive than stiff-string models and lend themselves to real-time modeling and

analysis.

The typical formulations of dynamics models are shown in Figures 1.4

- 1.7. Torsional vibrations are often explored as stiff string models using series

of lumped inertial discs connected by torsional springs and dampers (Figure

1.4). Whirl is typically modeled as an inertial disc on a torsional transmission

shaft that is allowed to move within the confines of a wellbore (Figure 1.5).
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Lateral vibrations are often explored through either lumped mass models that

allow the axis of rotation of each mass to move within the borehole or through

soft string models that allow for bending of drillstring components (Figure

1.6). Current bit models are similar to the one presented by Germay et al.

(Figure 1.7) (Germay et al., 2009).

Following the ideas given in [19], an alternative procedure for analysing bit stick-slip phenomenon and transitions be-
tween several bit dynamics is given in this paper. The physical phenomenon can be described mathematically as a sliding
motion, which occurs when the bit velocity is zero. The existence of this sliding motion depends on the weight on the bit
(WOB) and the torque applied by the surface motor. Such a regime is the main cause of bit sticking problems. By introducing
another discontinuity surface and forcing the system to evolve along this new surface, a dynamical sliding-mode control is
proposed. On the new surface, the bit speed will follow the top-rotary-system speed after reasonable time, without bit stick-
ing phenomena. Sliding-mode control aiming at eliminating friction-induced stick-slip oscillations is not usually used. Some
previous sliding-mode-based results are given for other control goals [31], however, no bifurcation analysis is done.

The relationships between the existing sliding motions and the characteristics of different types of system equilibria, are
established for the open and closed-loop configurations. A crucial feature of the closed-loop system is the existence of multi-
ple switching surfaces. The analysis of such a system is possible by studying the properties of the unique quasiequilibrium of
the closed-loop system. Moreover, a multiparameter-kind bifurcation analysis is carried out. That is, changes in drillstring
behaviour are studied through the variations in three key parameters: (1) the WOB, (2) the rotary speed, and (3) the torque
given by the surface motor. This is also a new contribution, which is only reported in [19], due to the fact that drillstrings
bifurcation analysis does not normally combine these three parameters. In most of the previous works, the WOB is not taken
into account. In [20], the influence of the WOB is considered, however, the drillstring model has 2-DOF. Finally, it is pointed
out that in [19], no control solution for the stick-slip problem is proposed.

The range of parameters which lead to a free bit-stick-slip oscillatory system is also identified. This analysis is a novel
approach to understand and design control systems for drillstrings models with more than 2-DOF.

The main features of the closed-loop system presented in this paper are

! The existence of multiple switching surfaces.
! The control goal is achieved by eliminating the open-loop standard equilibrium.
! There exists a unique quasiequilibrium point on one of the switching surfaces. This equilibrium has the velocities equal to

the reference value and is asymptotically stable for typical operating conditions.
! The controlled system response improves in many aspects the response obtained with typical PI-type controllers, spe-

cially, concerning the robustness under WOB, velocity and controller parameters changes. It is an alternative control solu-
tion to those previously reported (vibration absorber-type [22,23], PI-type control [20,25,32,33], linear quadratic regulator
[28] and linear H1 control [27]).

The model and control were proposed in [34], however, in this paper, the analysis is extended and corrected.

2. Torsional model of a drillstring

Three main parts can be highlighted in a conventional vertical oilwell drillstring: (1) the surface rotating mechanism, (2) a
set of drill pipes screwed one to each other, (3) the bottom-hole assembly (BHA) consisting of the drill collars, the stabilizers,
a heavy-weight drill pipe and the bit (the cutting device). In this paper, the BHA, excepting the bit, will be considered as one
block referred to as drill collars.

Fig. 1 depicts a simplified drillstring torsional model. It consists of four elements: (1) the top-rotary system ðJrÞ, (2) the
drill pipes ðJpÞ, (3) the drill collars ðJlÞ, and (4) the bit ðJbÞ. The inertias are connected one to each other by linear springs with
torsional stiffness ðkt; ktl; ktbÞ and torsional damping ðct; ctl; ctbÞ. A viscous damping torque is considered at the top-drive sys-
tem ðTar Þ and at the bit ðTab Þ. A friction torque ðT fb

Þ is considered acting at the bit. The equations of motion are

Fig. 1. Mechanical model describing the torsional behaviour of a simplified drillstring.

2036 E.M. Navarro-López, E. Licéaga-Castro / Chaos, Solitons and Fractals 41 (2009) 2035–2044

Figure 1.4: A typical lumped mass torsional model, as used in (Leine et al.,
2002). Components of the drillstring are lumped into singular masses, typi-
cally representing the drillpipe and BHA, which then interact via springs and
dampers, the properties of which are determined from drillstring properties or
through tuning from field or experimental data.

Current drillstring models are either computationally efficient but make

overly simplifying assumptions – often by ignoring wellbore geometry and dy-

namic system delays – or account for complex dynamic drillstring behaviors

but result in computational complexity. This dissertation seeks to propose a
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The transition from stick-slip to whirl is presumably caused by an
interaction between bending and torsion which destabilizes the
concentric position of the drillstring for high values of !. Possible
ways of interaction can be caused by

• Drillstring eccentricity. This causes the drillstring to whirl
violently only in the neighborhood of the bending critical
eigenfrequency. The drillstring would not whirl for very high
values of !, contrary to what has been observed from the
measurements.

• Gyroscopic effects. They are negligible because the clearance
between drillstring and borehole is much smaller than the
length of the drillstring.

• Anisotropic bending stiffness of the drillstring. This causes
the drillstring to whirl in a small interval of ! which is in-
consistent with the measurements.

• Fluid mud forces. They destabilize the concentric position of
the drillstring for !-values higher than a critical value con-
sistent with measurements.

Insight into the mechanism downhole and the possible interaction
between bending and torsion can be obtained by studying a sim-
plified model of the drillstring. In the next sections we will study
whether fluid forces of the drilling mud can explain the observed
phenomena. A low-dimensional model will be analyzed with both
torsional and lateral degrees of freedom in a fluid. This small
model will be discontinuous of Filippov-type and shows a com-
plicated dynamical behavior. Bifurcations in Filippov systems
were investigated in "15,16#. The results of "15,16# will be of use
to partly explain the complicated dynamical behavior of the
model.

4 Modeling of Stick-slip Whirl Interaction
A simple model for the whirling motion of a drill collar section

has been developed by Jansen "1,2# and has been further analyzed
by Van der Heijden "7#. A simple model to describe the torsional
stick-slip motion of a drillstring was presented in "2# and exten-
sively analyzed by Van den Steen "6# and in "3#.
In the following sections we will develop a model which can

describe the combined whirl and stick-slip motions in their most
elementary form, under influence of fluid forces. The model con-
sists of a submodel for the whirling motion, called the Whirl
Model, and a submodel for the stick-slip motion, called the Stick-
slip Model. The full model will be named the Stick-slip Whirl
Model. Elementary whirling can be described by at least 2 lateral

degrees of freedom and stick-slip motion by one torsional degree
of freedom. The Stick-slip Whirl Model has therefore 3 degrees of
freedom. The Stick-slip Whirl Model is a simplification of a drill-
string confined in a borehole wall with mud.
The interaction between torsional vibration and whirl of a rotor

was already studied in "17,18# but a dry friction torque on the
rotor and fluid forces were not considered.
We consider a rigid disk $which models the BHA% at the end of

a massless flexible shaft $the drill pipe% as is depicted in Fig. 5$a%.
The shaft and disk are confined in a stator $the borehole% filled
with fluid $drilling mud%. The upper end of the shaft is driven with
constant rotation speed ! $constant speed of the rotary table%. The
shaft is subjected to bending and torsion with bending stiffness k
and torsion stiffness k& . The disk with mass m and inertia J is
attached to the lower end of the shaft. The displacement of the
geometric center of the disk is denoted by x and y in the stationary
coordinate system or by the polar coordinates r and ' $see Appen-
dix B%. The disk is twisted with an angle & with respect to the
upper end of the shaft and with an angle ( with respect to the
fixed world

(!!t"& . (4.1)

On the disk or rotor acts a friction torque T f $the Torque On Bit%.
The lateral motion of the disk is constrained by the stator. The
rotor has a radius R and the stator a radius Rb . Contact is made
when the radial $lateral% displacement of the rotor r equals Rc ,
where Rc!Rb#R is the clearance.

5 Fluid Forces
The fluid forces on the drillstring are extremely complicated as

the fluid motion is nonstationary and possibly turbulent. However,
analytical results are available for a constantly rotating rotor in a
stator for small clearance and small lateral displacement $Rc$R
and r$R% "19,20#. As a first approximation we will use these
analytical results for nonstationary motion of a rotor which is
confined in a large stator for arbitrary lateral displacements. The
fluid force equations given in "19,20# are

Fig. 5 Stick-slip Whirl Model

212 Õ Vol. 124, APRIL 2002 Transactions of the ASME

Downloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 02/13/2014 Terms of Use: http://asme.org/terms

Figure 1.5: A typical drillstring whirl model, as used in (Leine et al., 2002).
In this case, an inertial disk is allowed to rotate within a confining wellbore
with the drillstring modeled as an elastic spring or beam.

computationally efficient drillstring model which accounts for wellbore geome-

try and system transmission delays by viewing the drillstring as a waveguide.
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Apparently, the rotating mechanical systems are not limited to shafts. The rotating beam components can be sometimes
extremely long. The best practical examples of long slender spinning structures are the drillstrings which are used in tech-
nologically advanced applications such as in offshore operations. The length of a typical offshore drillstring can be as large as
several kilometers. The nonlinear and chaotic dynamics of drillstrings have been investigated, among others, by Christoforou
and Yigit [15], Yigit and Christoforou [16], Al-Hiddabi et al. [17], Khulief et al. [18], Ritto et al. [19] and Sahebkar et al. [20].
The common feature of these studies is that for the derivation of the governing system they employ energy methods which
may require significant simplifications by omitting crucial parameters (e.g. the axial stretching [15–17]) or by leaving the
calculation of internal loading components to be performed indirectly (e.g. shear and bending loading). There are also studies
reported in the literature that rely on even more simplified formulations [21–22].

The motivation of the present is to develop an integrated and robust mathematical tool for studying the global nonlinear
dynamics of drillstring systems including possible chaotic impacts. As a first step, the theoretical formulation ignores the
borehole of the system and models the structure as a long slender beam with circular cross section rotating about its lon-
gitudinal axis. The excitation is provided by equal angular velocities imposed at both ends. Here ‘‘equal’’ refers to both
the magnitude and the direction of rotation. The novelty of the present approach is that the dynamic system is obtained
using a Newtonian derivation procedure. In addition, no simplified assumption is made apart from the fact that the axial
stretching is considered linear. The analysis is performed in the 3D space and the governing nonlinear mathematical model
that is developed in the study incorporates all possible dynamic effects, i.e. the bending and the torsional moments, the ten-
sion and the shear forces, the axial stretching and the lateral motions and finally, the angles of rotation associated with bend-
ing and torsion. All these parameters constitute the unknowns of the problem making a fully coupled nonlinear system that
is solved efficiently by Finite Difference method. Indicative examples associated with the application of the Finite Difference
method for examining the chaotic dynamics of structures such as beams or shells are those reported by Awrejcewicz and
Krysko [4]. The approach that is taken here is characterized by its complexity as it relies on the combination of two distinct
Finite Difference schemes. The reasons for assuming the associated procedure are explained thoroughly in Section 3 of the
present. The fact that the vibrations of the rotating beam under investigation are indeed chaotic is demonstrated through
extensive numerical results for selected test cases.

2. Mathematical formulation

The cylindrical structure under investigation is formulated as an Euler-Bernoulli beam with the following physical and
mechanical properties: mass per unit unstretched length m, weight per unit unstretched length w0, outer diameter do, cross
sectional area A, polar moment Ip, second moment I, material density qc, modulus of elasticity E and shear modulus G. It is
noted that the quantities do, A, Ip and I refer to the unstretched condition. The balance of the loading components (moments
and forces) is shown schematically in Fig. 1. The stretched differential length of the element is (1 + e)ds, where ds is the un-
stretched differential length, e is the axial strain and s denotes the Lagrangian coordinate that takes values along the

Fig. 1. Balance of the loading components of the rotating beam.

I.K. Chatjigeorgiou / Applied Mathematics and Computation 219 (2013) 5592–5612 5593

Figure 1.6: A stiff string model, allowing for drillstring component bending
and shear, as used in (Chatjigeorgiou, 2013). Drillstring bending and shear
are accounted for in an effort to simulate bucking and lateral motion.
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Figure 2. (a) Sketch of forces acting on a single cutter; (b) section of the bottom-hole profile located between
two successive blades of a drill bit (after [18]).

I
d2Φ(t)

dt2
+ C (Φ(t) − Ωot) = −T (t),(2.1)

M
d2U(t)

dt2
= Wo − W (t),(2.2)

where U , Φ and t denote vertical, angular positions of the drag bit and time, respectively. The
reacting torque-on-bit T (t) and the reacting weight-on-bit W (t) originate from the process of
rock destruction occurring at the bit-rock interface.

The formulation of the bit-rock interface laws derives from a phenomenological model [6]
of the forces acting on a single cutter of width w when removing rock over a constant depth d
and constant longitudinal velocity, as sketched in Figure 2(a). The rock cutting consists of two
independent processes: (i) a pure cutting process taking place at the cutting face (subscript c)
and (ii) a frictional contact process (subscript f) along the interface between the wearflat of
length ℓ (horizontal flat surface below the cutter) and the rock. The total force on the cutter
is the sum of the cutting force Fc and the friction force Ff , exerted on the cutting face and
on the wearflat, respectively.

The vertical (subscript n) and horizontal (subscript s) components (see Figure 2(a)) of the
cutting force and the friction force are expressed as

Fcs = εwd, Fcn = ζFcs, Ffs = µFfn, Ffn = σwℓ,

where ε is the intrinsic specific energy (the minimum amount of energy required to destroy a
unit volume of rock), ζ is a number characterizing the orientation of the cutting force, µ is the
coefficient of friction, and σ is the maximum contact pressure at the wearflat-rock interface.
When the wearflat is in conforming contact with the rock, σ is a constant parameter. Based
on single cutter experiments, the value of this parameter can reasonably be assumed to be in
the same range as ε [1, 2].

The distinction between cutting and friction forces is also relevant to modeling the gener-
alized forces acting on a drill bit. The reacting torque-on-bit T and the reacting weight-on-bit
W due to the operation of rock destruction account for both cutting and frictional processes,D
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Figure 1.7: A PDC drag bit model, as developed by (Germay et al., 2009). The
cutters are simplified as cutting blades to facilitate the simulation of cuttings
and penetration rate.
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1.3 Objectives and Contributions

This dissertation proposes two uncoupled drillstring models, one mod-

eling harmonic axial vibrations in the drillstring and the other modeling tor-

sional vibrations, both based upon the damped wave equation. These models

are derived from first principles and the mechanics of each are verified with

surface and downhole drilling data and scaled laboratory models. The axial

model is then used to optimize the placement of axial oscillation tools and

verified through a number of field trials. The torsional model is used first to

compare the effectiveness of four types of top drive control systems, three of

which incorporate active stick-slip mitigation, and secondly for an exploratory

study of drillstring imaging.

The dissertation begins with a comprehensive literature survey, pre-

sented in Chapter 2, of the current state of drillstring dynamics modeling

and an overview of currently deployed vibration mitigation control systems.

A majority of this chapter has been previously presented as a paper in the

ASME DSCC Conference in 2014 in San Antonio, TX (Shor et al., 2014).

A derivation from first principles of the drillstring model used in sub-

sequent chapters is then presented in Chapter 3. The model allows for the

distribution of damping along the drillstring in addition to allowing multi-

ple harmonic force or displacement inputs to be present. Sources of damping

are identified and quantified and solution methodologies in both the time and

frequency domain are presented.
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A comprehensive method to optimize the placement of axial oscillation

tools with the drillstring is presented in Chapter 4 and is verified using

the results of several field trials showing improvements in steering abilities

and well reach. Given an oscillation tool’s design parameters and intended

wellpath, locations within the drillstring are identified for optimal placement

and friction reduction along the wellbore can be directly computed. A portion

of this chapter was presented at the 2015 SPE/IADC Drilling Conference in

London, United Kingdom (Shor et al., 2015a).

The torsional implementation of the model is then used to compare the

effectiveness of four different top drive control strategies in Chapter 5. These

four strategies include a stiff PI controller, a tuned PI controller, a second

order tuned PI controller, and an idealized impedance matching controller. A

portion of this chapter was presented at the 2015 International Conference on

Engineering Vibration (ICoEV) in Ljubljana, Slovenia (Shor et al., 2015b).

A feasibility study of drillstring imaging, which utilizes torsional signals

from surface to image features along the drillstring, is presented in Chapter

6. Through a series of experiments, at multiple scales and complexities, it is

shown that it is possible to image features as small as 30ft within a drillstring

if surface sampling frequency is in excess of 1000Hz and a small random square

wave input is imposed over the commanded rpm signal. The research presented

in this chapter was carried out as part of a joint research project with the

University of Cambridge.
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The dissertation concludes in Chapter 7 with a brief summary of the

work presented in the preceding chapters and highlights the major contribu-

tions. A proposed path forward and possible future work is also outlined.

1.4 Outline

This dissertation is laid out in seven chapters, some of which have

been presented as independent conference papers and others of which are in

preparation.

• Chapter 2 presents a literature review of the current state of drillstring

modeling as well as the models currently used for control applications.

• Chapter 3 introduces the two drillstring models and derives each from

first principles. Sources of damping within the drillstring are identified

and their inclusion in the models discussed.

• Chapter 4 applies the axial drillstring model first to bit bounce, to verify

model mechanics, and secondly to the placement of axial oscillation tools.

Optimal placement strategies are discussed and then verified with field

trials.

• Chapter 5 applies the torsional drillstring model to optimize controllers

for model centric control to minimize stick slip. The effectiveness of a stiff

PI controller, a tuned PI controller, a tuned second order PI controller

and an idealized impedance matching controller are compared.

14



• Chapter 6 applies the torsional drillstring model to the imaging of impedance

changes within the drillstring. This feasibility study applies the concepts

of wave reflection, signal processing and model fitting to map changes

in three demonstration setups: a simple beam, a laboratory drillstring

model and a drilling rig.

• Chapter 7 summarizes the contributions of the this dissertation and

presents the path forward, further work and conclusions.

• Appendix A lists the abbreviations and symbols used in this dissertation.

• Appendix B lists the papers published by the author and papers in prepa-

ration.

• Appendix C contains a summary of equations used for the minimum cur-

vature method, used to interpolate grid points along a curving wellpath

based on sparse survey data, used primarily in Chapter 4.

• Appendix D contains a summary of the algorithms used in the transfer

matrix approach used in Chapter 4.

• Appendix E contains the SimulinkTM model for the time domain sim-

ulation and the torsional transfer matrix model for frequency domain

analysis used in Chapter 5.

• Appendix F contains a summary of the signal processing code used in

Chapter 6.
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Chapter 2

Literature Review

In the following chapter, a comprehensive overview of the history of

drillstring modeling and vibration detection is presented, which culminates in

an assessment of the current state-of-the-art and the main challenges that still

remain to be addressed. This review builds upon an earlier review paper by

Patil and Teodoriu that looked specifically at torsional vibrations (Patil and

Teodoriu, 2013) and was presented in 2014 at the ASME Dynamic Systems

and Controls Conference (Shor et al., 2014).

Early efforts in drillstring dynamics modeling focused on understand-

ing vibration patterns that were observed using surface sensors or during the

early deployments of downhole sensing equipment. Models were simple and

typically modeled the drillstring either as simple beams or as series of dis-

crete masses connected by springs or dashpots. These models could not ex-

plain many phenomena observed but were sufficient for efforts in vibration

control and mitigation to begin. These strategies either defined critical con-

trol parameter regions to avoid the onset of vibration or actively sought to

mitigate specific forms of it, specifically torsional vibration. Development of

advanced coupled models continued rapidly, but deployment of advanced con-
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trol approaches in the field remains hampered by low data quality, both due

to bandwidth limitations and expense, and reluctance of stakeholders to ac-

cept liability or change. Operators championing new technology have emerged

and are driving the deployment of new and improved methods, but progress

remains slow. Current work has focused on the development of coupled mod-

els and their use in control situations, but field testing and deployment has

been limited but are slowly expanding. Future work will need to refine sensor

and instrumentation requirements for successful deployment, provide valida-

tion and demonstrate tangible performance gain. The past development of

drillstring dynamics modeling, current modeling approaches and examples of

industry deployment will presented in following sections.

2.1 Evolution of Drillstring Modeling

Drillstring dynamics modeling began in the 1960s in efforts to under-

stand downhole behavior and optimize performance. These models often had

few degrees of freedom and made simplifying assumptions, including inde-

pendence of vibration modes, perfectly vertical wellbores and abstraction of

various drillstring components as simple lumped masses. As well designs be-

came increasing complex, couplings between the different modes of vibration

and interaction between the wellbore and drillstring had to be introduced to

explain observed behaviors. The advent of downhole sensing and improved

surface sensing allowed for the characterization of modes of vibration and led

to continued development of dynamics models.
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In the following sections the early efforts of drillstring dynamics models,

advances in coupled models and recent applications that use vibrational models

for improving drilling performance are explored.

2.1.1 Early Efforts

Efforts to understand drillstring vibrations began in 1960 with papers

by Bailey and Finnie delving into the theory and verification of axial and tor-

sional vibrations of a vertical drillstring (Bailey and Finnie, 1960; Finnie and

Bailey, 1960). Their model consisted of continuous beam elements subject to

longitudinal, or axial, and torsional vibration and described mathematically

using the wave equation. Lateral motion of the drillstring was ignored. They

concluded that accurate estimates of the boundary conditions at the bit and

the surface were necessary to estimate the natural frequencies, but they also

noticed an interaction between torsional and axial vibrations that they were

not able to explain. It was not until 1984 that Dunayevsky et al. proposed a

model that considered the coupling of axial and lateral vibrations for a drill-

string confined within a wellbore (Dunayevsky et al., 1984). The occurrence

of drillstring precession, or whirl, had been noted in experiments and a math-

ematical model was laid out that was used to determine rotary speeds to avoid

it.

In 1985, Wolf et al. describe one of the earliest instances of downhole

sensing of downhole vibrations where they applied a wired drill pipe with

downhole vibration sensors for real-time sensing of downhole measurements
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(Wolf et al., 1985). In the same year, Besaisow et al. proposed a surface

vibration measurement system that proved effective at detecting drillstring

vibrations in shallow vertical wells (Besaisow et al., 1985). The following year,

Ho published a theoretic analysis of the effects of stabilizer placement in the

bottom hole assembly and hole curvature to explain bit side forces in a static

drillstring (Ho, 1986). Simultaneously, in an effort to understand observed

periodic oscillations in surface torque, Shell Research developed a similar wired

drillstring and recorded the downhole cyclic behavior of stick-slip that was not

visible at the surface (Dwars et al., 2013).

As interest in understanding torsional vibrations increased, Halsey et

al. presented a model that looked at torsional resonance and verified it using

a test well (Halsey et al., 1986). They found a close correlation between pre-

dicted and observed frequency spectra. With the application of a correction

factor to account for speed of torsional vibration propagation through the drill-

string, they concluded that downhole torsional vibrations could be effectively

measured at the surface. In 1987, Skaugen noted that bit-rock interaction adds

additional quasi-random excitation to the system which, when taken into ac-

count, improves frequency domain analysis of torsional vibrations (Skaugen,

1987).

Advances in the understanding of axial vibrations also continued and

were applied by Kaisi et al. in 1987 to model the axial response of drillstring in

response to jarring – a drilling operation where a large impact force is applied

at point(s) on the drillstring to free stuck pipe (Kalsi et al., 1987). In 1991,
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Lee’s Ph.D. thesis presented the most thorough investigation of axial vibrations

in a drillstring up to that date, along with an examination of hydraulic inter-

action and the various sources of dampening. For a drillstring under harmonic

disturbance, a framework for calculating dampening factors that accounted

for friction – modeled as Coulomb friction, viscous dampening and material

hysteresis – was presented. A simple transfer matrix approach was proposed

for solving the frequency domain response of the drillstring. Comparing test

rig data with modeled results, Lee determined that frictional forces were the

dominant source of dampening in axial and torsional vibrations, especially in

deviated wellbores (Lee, 1991). In 1993, Aarrestad and Kyllingstad proposed

an extension to the surface boundary condition by splitting the surface equip-

ment into two parts, being the stationary rig and suspended top drive. This

significantly improved upon Lee’s model, where the surface was modeled as a

single mass spring damper system attached to a fixed boundary instead using

two discrete masses (Aarrestad and Kyllingstad, 1993).

2.1.2 Coupled and Advanced Models

In the early 90’s, it was becoming apparent that a full understanding of

vibrations would require a coupling of the axial, torsional and lateral modes.

In 1992, Aldred and Sheppard proposed a coupled lateral, torsional and axial

vibration model (Aldred and Sheppard, 1992). They performed laboratory

experiments that confined a section of pipe, mounted with a fixed motor and

bearing within a circular bracket, thus modeling the drillstring – borehole
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system. Using this configuration, they induced lateral motion showing that

whirl is in fact self-sustaining and lateral motion continues once rotation has

stopped until attenuation has been fully achieved. A study a few years later

by Santos et al. in 1999 presented empirical evidence that excessive downhole

vibration – especially whirl – could potentially lead to borehole damage (Santos

et al., 1999).

Multiple degree-of-freedom models for rotating shafts have been used

in rotor dynamics for decades and are well reviewed by Ishida (Ishida, 1994).

These models allowed for the calculation of harmonics and critical speeds for

inertial disks on rotating shafts fixed at one or two ends. A subsequent review

by Swanson et al. in 2005 described the conditions and geometries of forward

and backward whirl in rotating machinery (Swanson et al., 2005). The first

application of these models was for models of drill collars between stabilizers

in BHAs by Jansen in 1991 (Jansen, 1991). He noted that forward whirl was

caused by a center-of-mass not located on the axis of rotation in the assembly

and backward whirl was caused by friction between the stabilizers and borehole

wall. A similar conclusion was reached by Vandiver et al. in 1990 when they

ascribed the onset of whirl from the bending or buckling of the drill collars

in a bottom hole assembly (Vandiver et al., 1990). A series of experimental

studies by Dykstra et al. in 1994 and 1995 confirmed onset of whirl (Dykstra

et al., 1994, 1995).

As extended reach, deviated and horizontal wells became a mainstay of

the industry in the 1990s and 2000s, interest in understanding vibrations and
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dampening in the tangent and horizontal sections increased. An analysis by

Heisig in 2000 computed the natural frequencies of drillstrings in laterals using

resolved FEM simulations (Heisig and Neubert, 2000). This allowed for the

characterization of drillstring – borehole contact throughout the full lateral

section, but was found to be computationally intensive. In 2002, Tikhonov

et al. proposed a hybrid model that combines the bending beam model with

the lumped mass model where external forces, such as borehole contact, are

applied at the nodes between beams and internal forces are applied on the

beams themselves, to achieve similar results as Heisig but with significantly

faster computational time (Tikhonov and Safronov, 2002).

The interaction between whirl and stick-slip is explored in papers by

Leine et al. in 2002 and Christoforou and Yigit in 2003 (Leine et al., 2002; Yigit

and Christoforou, 1996, 2000; Christoforou and Yigit, 2003). Both papers as-

sume vertical wellbores and model the drillstring as a single mode approxima-

tion of a continuous beam model that is allowed to rotate off-center within a

circular wellbore. A self-exciting and stable cycle was confirmed, as observed

in the field, of torque on bit and angular bit velocity. Mitigation was achieved

with a simple PID controller in simulation. Mihajlovic et al. present additional

modeling and experimental work of rotating unbalanced masses in 2007, fur-

ther confirming the drillstring behavior under stick-slip and whirl (Mihajlović

et al., 2007). Applied directly to a bottom hole assembly, Liao details several

experiments in 2012 where two different whirl regimes are observed: periodic
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bump and stick, or continuous rolling motion (Liao et al., 2012; Ghasemloonia

et al., 2014).

The low attenuation of torsional vibrations within the drillstring, low

inherent frequency and ease of detection at the surface meant that simple mod-

els could continue to be applied in studies of stick-slip. In a series of papers

in 2007 and 2009, Navarro-Lopéz and Cortes presented a simple lumped mass

model to look at stick-slip and used this model to create a sliding mode con-

troller to mitigate its occurrence (Navarro-López and Cortés, 2007; Navarro-

Lopez, 2009). As recently as 2011, Rudat et al. used a single degree of freedom

model to investigate stick-slip (Rudat et al., 2011). Further developing these

models in 2013, Nandakumar and Wiercigroch presented a modified two-degree

of freedom lumped-mass model to look at stick-slip and bit bounce (Nandaku-

mar and Wiercigroch, 2013). They noted that many previous models do not

allow for sufficient dampening of axial and torsional vibrations within the drill-

string due to material properties. Stick-slip mitigation approaches currently

used by industry employ models similar to these and are discussed in later in

this chapter.

2.1.3 Current Approaches and Accounting for Deviated Wells

In 2005, Khulief and Al-Naser incorporated elasto-dynamic properties

into a FEM model that incorporated bending and strain of drillstring elements

(Khulief and Al-Naser, 2005). With this model, the first three vibrational

modes (previously only the first mode) were formulated. They also proposed
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a reduced order model that was still able to capture lower frequency modes.

In 2007, they extended their work and showed the development of a stable

cycle between angular displacement and velocity during these stable stick-slip

events (Khulief et al., 2007). A similar FEM model presented by Trindade

et al. in 2005 showed BHA deformation under compression that is similar to

that experienced in the field (Trindade et al., 2005). Moreover, rotation of

this deformed BHA can lead directly to whirl due to an offset center of mass

during rotation.

To further understanding of bit-rock interaction, Richard et al. in 2007

presented a detailed model for Polycrystaline Diamond Compact (PDC) bits

(Richard et al., 2007). PDC bits are rapidly becoming the workhorses of

the industry through almost universal applicability. They looked closely at

cutter-rock interaction and cutter placement. When coupled with a simplis-

tic lumped-mass torsional drillstring model, they were able to replicate both

stick-slip limit cycles and bit bounce. Analysis of stick-slip with PDC bits is

continued by Zamanian et al. in 2007 and Germay et al. in two papers in 2009

which contain detailed analyses of the stick-slip limit cycle (Zamanian et al.,

2007; Germay et al., 2009). Accounting for high degrees of uncertainty due to

heterogeneity of the formation, Ritto et al. in 2009 added explicit uncertainty

to their bit-rock interaction model and determined that even small uncer-

tainties give large variations in axial and torsional vibrations and, through

coupling, on lateral vibrations as well (Ritto et al., 2009).
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Bit-rock interaction models were expanded through work by Perneder

et al. in 2012 to explain bit tilt and directional tendencies when drilling with

PDC bits (Perneder et al., 2012). Kovalyshen presented an analytic model for

bit whirl in 2013 that uses the time history dependent bit-rock interaction to

excite the onset of whirl (Kovalyshen, 2013). By allowing the BHA to buckle

under compression and provide some side force to the bit, bit whirl – and the

resulting spiral wall cut – is observed, and forward or backward whirl in the

BHA is excited. From the analytic model, he identified a region of stability as

a function of bit rotary speed and rock strength. Depouhon and Detournay in

2014 determined a critical angular bit speed, below which stick-slip occurs but

above which stable bit rotation degenerates into bit bounce or whirl (Depouhon

and Detournay, 2014).

With a majority of wells drilled in the past twenty years being devi-

ated or horizontal wells, special considerations had to be taken into account

for wellbore deviation. In 2010, Hakimi and Mardi proposed using the dif-

ferential quadrature method to determine the contact length of a drillstring

and borehole to improve calculation of friction and dampening (Hakimi and

Moradi, 2010). In 2011, Sahebkar et al. presented a drillstring model for an

inclined well where drillstring– wellbore interaction is accomplished through

a series of linear springs (Sahebkar et al., 2011). In 2012, Hu et al. presented

a FEM model that allows for special curvature of the drillstring within a de-

viating wellbore and also allows for strain and bending within the individual
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beam elements (Hu et al., 2012). They found rapid convergence with analytic

solutions for simple cases that closely matched field case measurements.

In efforts to apply models used regularly in rotor dynamics, a series of

papers in 2012 by Ghayesh and Ghayesh et al., and in 2013 by Chatjigeor-

giou, used finite difference models of rotating beams under chaotic excitation

(Ghayesh, 2012; Ghayesh et al., 2012; Chatjigeorgiou, 2013). These beams

have fixed boundary conditions where rotation is applied to one end and fric-

tion to the other and a chaotic excitation is either applied along the beam or

at the frictional end. Neither of these models was confined within a borehole,

but both efforts are ongoing.

With the advent of high frequency – up to 1400 Hz – measurement

of downhole vibrations, previously unobserved high frequency vibrations are

now being observed. In 2013, Baker Hughes equipped a PDC bit with a high-

frequency collar-mounted vibration sensor to investigate at-bit vibrations and

their correlations with bit failure (Makkar et al., 2014). They recorded high

frequency torsional vibrations, dubbed High Frequency Torsional Oscillations

(HFTO), at frequencies much higher than stick-slip vibrations, and attributed

these to natural frequencies of the bottom-hole assembly that are excited by

drilling through harder formations (Oueslati et al., 2013b). Subsequent labo-

ratory tests with single cutter bits seem to confirm the existence of these high-

frequency torsional vibrations (Ledgerwood III and Tergeist, 2014). They were

also noticed by Stroud et al. in 2013 with a similar vibration recording tool

near the bit in a rotary steerable operation (Stroud et al., 2013). However,
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work by Baumgartner et al. was able to replicate these high frequency signals

as an artifact of sensor whirl around the borehole (Baumgartner and van Oort,

2014).

2.2 Industry Applications

Drilling rigs built through the 1980s, some still in use today, have simple

brake and throttle interfaces that make them ill-suited for automated controls.

Computerized control systems only began to appear in the late 1980s and early

1990s; one of the earliest is described by Sananikone et al. in a 1992 paper

as a simple torque and RPM control system where rotary speed set points

are maintained through torque control (Sananikone et al., 1992). Tonnesen

presents a further refinement in 1995, in the form of the NOV smart chair,

which is in wide use today (Tonneson et al., 1995). Torque measurements,

necessary for control, were first achieved through costly strain gauges which

were quickly replaced with current sensors, integrated to estimate torque, once

electric top drive units were deployed (Sananikone et al., 1992).

Early computer control efforts, such as a system described in Young in

1969, ignored drillstring dynamics completely (Young, 1969). Dynamics was

considered later on, such as by Skeem in 1979 in his analysis of drillstring

dynamics during jarring operations following a stuck pipe event (Skeem et al.,

1979). Real-time management of drilling parameters to avoid calculated nat-

ural vibration frequencies is now common, such as in a system described by

Chen in 2003. Active vibration mitigation efforts have primarily been focused
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on mitigating stick-slip due to its low inherent frequency and ease of detec-

tion using surface equipment. Industry applications include the STRS System

deployed by Shell (Kriesels et al., 1999) and NOV (Kyllingstad and Nessjøen,

2009) and its descendants. A newly proposed DOSKIL system proposed by

Canudas-de-Wit, 2008 adds real-time weight-on-bit control (Canudas-de Wit

et al., 2008). Whirl remains a topic of interest, but due to poor transmis-

sion of lateral vibration signals to the surface it incredibly hard to detect it

without downhole tools. Such tools now exist and, coupled with real-time

high-frequency and high bandwidth downhole communication, now offer the

opportunity for improved control purposes.

The SoftTorque Rotary System (STRS) is a system developed inde-

pendently by Shell and NOV, now cross-licensed, that works directly with the

control system of AC top-drives to detect and mitigate stick-slip conditions.

Runia et al. describe the Shell variant in detail in their 2013 paper (Dwars

et al., 2013). STRS was first developed in the 1980s and initially deployed in

the 1990s on rigs with electrically driven kellies or top drives. The controller

was a bolt-on black box that supplemented the analog control signal and is

shown in Figure 2.1. It was effective in cancelling out first order vibration

modes and was often able to cancel out adjacent modes, but it was unstable

at low rotational speeds, which were commonly used during well steering op-

erations, and in long strings or strings with multiple drillstring components.

It became a standard drilling tool after extensive testing on DC electric drives

in the early 1990s. Once newer rigs began to be introduced with digitally con-
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trolled AC top drives that used variable frequency drives, the relatively long

time delay in the analog SoftTorque systems and conflicts in control signals

with the VFDs reduced STRS’s effectiveness and led to a decline in use. A

decade later, the system was revisited and re-implemented as an integrated

component of the top drive control system that eliminated time delays and

control signal conflicts. Now deployed on over sixty rigs, the STRS system has

been shown to be an effective stick-slip mitigation system, an example oper-

ation of which is shown in Figure 2.2. Challenges remain, including the need

to tune the system to individual top drive systems and continued instability

in long drillstrings.

Kyllingstad and Nessjøen detailed the NOV variant, called SoftSpeed,

in two papers in 2009 and 2010 as a simple tuned PI control loop built into

the top drive control unit that is able to actively dampen both the first and

second modes of stick-slip vibration by modeling the drillstring as a pendulum

(Kyllingstad and Nessjøen, 2009, 2010). An earlier version of the system,

presented in 2009, did not account for inertia of the drillstring and was shown

to be ineffective for drillstrings over 5000 meters long in simulation. The second

version, presented in the 2010 paper, adds tuning for drillstring inertia, and

showed that the system could dampen the fundamental modes in long strings

as well as the higher order modes. A follow-up paper in 2011 detailed the

results of a field trial of the system and showed that with proper tuning,

the system is able to actively dampen any stick-slip vibrations encountered

(Nessjøen et al., 2011). Forster, in 2011, proposed using induced axial vibration
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Figure 2: The main components in a conventional “stiff” drive, are a motor (inc. gearbox), rotary table, and drive. Because
the rotary table rotates at a fixed speed, it presents a “dynamically clamped” condition to the drillstring. The
drillstring being comparatively thin behaves as a torsional spring, while the BHA manifests it self as an inertia. The
combination of the two forms a torsional pendulum, which is excited by interactions of the bit, BHA and drillstring
with the bore hole.
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Figure 2.1: The STRS system model, as shown in (Kriesels et al., 1999).

near the bottom hole assembly to mitigate stick-slip (Forster, 2011) and a

follow-on study published in 2014 showed improvements in rate of penetration

as well as reduced incidents of stick-slip (Gee et al., 2014).

A new approach under development within Shell Research regards the

drillstring as a transmission line for torsional waves and eliminates the need

for tuning (Kreuzer and Steidl, 2010). By attempting to reduce the reflec-

tivity of the surface boundary condition – the top drive – the incidence of

standing torsional waves in the drillstring is greatly reduced (Dwars, 2015).
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Figure 3: Field measurement of STRS application during severe stick slip vibration in the Groningen gas field. Switching on
the STRS system brings the system in a condition of smooth drilling within 3 oscillation cycles . Note, that despite
the wide spread misconception, torque fluctuations are not traded in for velocity fluctuations.Figure 2.2: Function of STRS system during a drilling operations, as shown

in (Kriesels et al., 1999).

Early field trials have shown promise in the system, but precise and high speed

sensor measurements are required and poor sensor quality or delays degrade

performance and can inject instabilities.

Other proposed systems have ranged from applications of Neural Net-

works (Dashevskiy et al., 1999; Rudat et al., 2011), non-linear control (Al-

Hiddabi et al., 2003), sliding-mode control (Navarro-Lopez and Cortes, 2007;

Navarro-Lopez and Licéaga-Castro, 2009), H-infinity control (Yilmaz et al.,

2013), attractive ellipsoid method (Saldivar and Mondié, 2013), passive non-
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linear energy sink downhole tools (Viguié et al., 2009) or time-delayed shock

absorbers (Chatterjee and Mahata, 2009).

2.3 Conclusions of the Literature Review

Early drillstring dynamics models were primarily developed as aids to

drilling engineers and rig designers to help understand downhole behaviors

and to provide guidelines to improve drilling operations. These models made

simplifying assumptions but were still able to determine critical speeds to

avoid based on drillstring design. Once downhole measurements were made

available, the three basic modes of vibration were characterized: stick-slip,

whirl and axial vibration.

Stick-slip occurs at frequencies of 0.1 - 0.5 Hz and is readily detectible

at surface, so much of the modeling and control efforts since the 1980s has

focused on identifying and actively mitigating stick-slip. Simple single degree

of freedom models are able to simulate stick-slip and an entire suite of control

algorithms has been proposed. This work has found an application in industry,

as the Shell SoftTorque Reduction System and the NOV SoftSpeed System and

has been shown to be effective.

Rather than propose another comprehensive, computationally intensive

drillstring model which may be tuned to replicate field data, this dissertation

will instead develop a computationally efficient method to characterize drill-

string dynamics for optimization and control purposes. By treating the drill-

string as a wave guide for both standing and traveling waves, both axial and
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torsional waves may effectively modeled using the wave equation, and by in-

corporating a methodology to account for damping due to wellbore geometry,

physical results are produced.
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Chapter 3

Definition of Drillstring Models

The solution strategy for physical models may be broken up in two

broad categories, time domain models and frequency domain models. In gen-

eral, each of these categories can be transformed into the other, however, it is

possible to make simplifying assumptions that reduce the complexity of each.

A study of both shall be conducted, but shall begin with the derivation of the

underlying model, the damped wave equation, from basic principles.

3.1 Derivation from First Principles

The dynamics of a thin walled tube may be approximated by Hooke’s

law in cylindrical coordinates if linear, elastic behavior is assumed. Along the

outside of the tube, Hooke’s law states

εz =
1

E
(σz − ν (σr + σθ)) (3.1)

εr =
1

E
(σr − ν (σz + σθ)) (3.2)

εθ =
1

E
(σθ − ν (σz + σr)) (3.3)
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where the axial, radial and hoop stresses are σz, σr, and σθ, E is Young’s

modulus and ν is Poisson’s ratio. Shear is given by

τrz = Gγrz (3.4)

τθz = Gγθz (3.5)

τrθ = Gγrθ (3.6)

where the shear strains are γ, the shear stresses are τ and G is the shear

modulus.

For the remainder of the dissertation, the following simplifying assump-

tions will be made to allow the drillstring to be simplified as a one dimensional

wave guide

• The radial strain due to a difference in fluid pressure from the inside of

the drillpipe to the annulus will be assumed to be negligible and will be

taken to be zero.

• The radial and hoop strain due to axial stress will be assumed to be

much smaller than axial strain and thus be negligible and taken to be

zero.

• Only rotational shear strain is taken into account and shear strain due

to bending is ignored.

• Axial and torsional components are entirely decoupled along the drill-

string.
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Thus, the simplified form of Hooke’s law becomes

σz = Eεz (3.7)

τθz = Gγθz (3.8)

Since these equations are identical in form, the resulting damped wave equation

is equivalent for both axial and torsional waves. In the following sections, strain

is taken to be εz = ∂u
∂z

and shear strain is taken to be γθz = ∂φ
∂z

, where u and

φ are axial and torsional displacement, respectively. For the remainder of this

dissertation, σ = σz, ε = εz, τ = τθz and γ = γθz.

3.1.1 Damped Wave Equation

The wave equation for axial or torsional motion of a drillstring may be

derived from first principles assuming a linear response of the system. Begin-

ning with simplified form of Hooke’s law in Equation 3.7

F

A
= σ = Eε = E

∂u

∂z
(3.9)

where F is axial force, A is cross sectional area and u is displacement as a

function of axial position, z and time, t.

An incremental change in force due to the acceleration of an incremental

mass is given by Newton’s law

∂F

∂z
= ρA

∂2u

∂t2
(3.10)
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Equations 3.9 and 3.10 may be combined into a single equation

∂

∂z

(
EA

∂u

∂z

)
=
∂F

∂z
= ρA

∂2u

∂t2
(3.11)

∂2u(z, t)

∂t2
=
( ρ
E

) ∂2u(z, t)

∂z2
(3.12)

which gives the one dimensional undamped wave equation

1

v2

∂2u(z, t)

∂t2
=
∂2u(z, t)

∂z2
(3.13)

Axial and torsional wave velocity is not dependent on frequency, thus

the wave velocity for axial, va, and torsional, vt, are given by

va =

√
E

ρ
(3.14)

vt =

√
G

ρ
(3.15)

Damping may be added to Equation 3.10 as a term that removes a

velocity dependent component from the incremental force

∂F

∂z
= ρA

∂2u

∂t2
− C∂u

∂t
(3.16)

which gives the damped wave equation

1

v2
a

∂2u(z, t)

∂t2
+ c

∂u

∂t
=
∂2u(z, t)

∂z2
(3.17)

where

c = c(z, t) =
C

EA
(3.18)
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is the damping coefficient, which may be a function of distance and time. This

coefficient may be modeled a number of ways, a thorough review of which is

given by Lee in his thesis (Lee, 1991). A discussion of the forms of damping

considered in this dissertation will be given in a subsequent section.

An equivalent construct may be derived for torsional waves if Equation

3.8 is combined with the following relationship between angular acceleration

and the moment of inertia

∂τ

∂z
= ρJ

∂2φ

∂t2
(3.19)

to give

1

v2
t

∂2φ(z, t)

∂t2
+ c

∂φ

∂t
=
∂2φ(z, t)

∂z2
(3.20)

where φ(z, t) is the angular displacement as a function of axial position, z, and

time, t.

3.2 Frequency Domain Modeling

The wave equation may be modeled in the frequency domain through

the application of the Fourier transform and using an elegant simplification

where only the response of the system to a single induced frequency is exam-

ined. This method generates a transfer matrix which establishes a relationship

between the displacement and force across a discretized simulation node.

3.2.1 Transfer Matrix Method

The one dimensional damped wave equation, Equation 3.17, can be

solved if a zero displacement boundary condition is assumed at z = 0 and a
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ρ, E,A

z = lz = 0

f(t)

Figure 3.1: Simple beam of length l modeled using the one dimensional wave
equation.

unit harmonic input f(t) = eiωt is assumed at z = l, as shown in figure 3.1.

These boundary conditions may be summarized as

∂u(z = 0)

∂z
= 0 (3.21)

EA
∂u

∂z
(z = l) = eiωt (3.22)

Equation 3.17 may be solved by applying the Fourier Transform, u(z, t)→

U(z, ω) to obtain

ρ

E

∂2u(z, t)

∂t2
+

C

EA

∂u

∂t
=
∂2u(z, t)

∂z2
(3.23)

−ω2U(z, ω) + iω
C

EA
U(z, ω) =

∂2U(z, ω)

∂z2
(3.24)

−
(
ω2ρ

E
− iωC

EA

)
U(z, ω) =

∂2U(z, ω)

∂z2
(3.25)

(3.26)

which is simplified to the equation

−k2U(z, ω) =
∂2U(z, ω)

∂z2
(3.27)

where

k2 =
ω2ρ

E
− iCω

EA
(3.28)
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This differential equation has the general solution

U(z, ω) = c1 sin(kz) + c2 cos(kz) (3.29)

and the boundary conditions, Equations 3.21 and 3.22, become

∂U(0, ω)

∂z
= 0 (3.30)

EA
∂U(l, ω0)

∂z
= δ(ω − ω0) (3.31)

At frequency ω = ω0, the boundary condition at x = l becomes

∂U(l, ω)

∂z
=

1

EA
(3.32)

Applying the boundary condition given by Equation 3.30 gives c1 = 0. Equa-

tion 3.32 can then be used to solve for c2:

∂U(l, ω)

∂z
= c2k sin(kl) =

1

EA
(3.33)

c2 =
1

EAk sin(kl)
(3.34)

which gives the final solution

U(z, ω) = − cos kz

EAk sin kl
(3.35)

Now, this assumes a beam of length l with the two force boundary

conditions, f(t) at z = l and 0 at z = 0. For a subcomponent of the system, a

force balance needs to conducted, as shown in Figure 3.2 and can be expressed

as (
Ul

Fl

)
n

=

(
Uu

Fu − Fe

)
n−1

(3.36)
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Figure 3.2: Force balance across a simple beam element.

where Fe = f(t) is the external excitation force.

To calculate the transfer matrix, the change in displacement, from z = 0

to z = l based upon a unit force at z = l is given by

z = 0 U(0, ω) = − 1

EAk sin kl
(3.37)

z = l U(l, ω) = − cos kl

EAk sin kl
= U(0, ω) cos kl (3.38)

For a unit force from z = 0, the boundary conditions must be swapped but

give the same (but negative) solution

z = 0 U(0, ω) =
cos kl

EAk sin kl
= −U(l, ω) cos kl (3.39)

z = l U(l, ω) =
1

EAk sin kl
(3.40)

Therefore, for an arbitrary force from either z = 0 or z = l, the dis-

placements at z = 0 and z = l can be computed using(
Uz=0

Uz=l

)
=

(
cos kl

EAk sin kl
− 1
EAk sin kl

1
EAk sin kl

− cos kl
EAk sin kl

)(
Fz=0

Fz=l

)
(3.41)

from which the transfer matrix can be determined by solving for Uz=l and Fz=l

given that Uz=0 and Fz=0 are known:

Uz=0 =
cos kl

EAk sin kl
Fz=0 −

1

EAk sin kl
Fz=l (3.42)

Uz=l =
1

EAk sin kl
Fz=0 −

cos kl

EAk sin kl
Fz=l (3.43)
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Equation 3.42 may be rearranged to find Fz=l

Fz=l = − (EAk sin kl)Uz=0 + (cos kl)Fz=0 (3.44)

and using equations 3.43 and 3.44, Uz=l may be found

Uz=l =
1

EAk sin kl
Fz=0 −

cos kl

EAk sin kl
Fz=l (3.45)

=
1

EAk sin kl
Fz=0 (3.46)

− cos kl

EAk sin kl
(− (EAk sin kl)Uz=0 + (cos kl)Fz=0) (3.47)

=
1− cos2 kl

EAk sin kl
Fz=0 + (cos kl)Uz=0 (3.48)

Uz=l = (cos kl)Uz=0 +

(
sin kl

EAk

)
Fz=0 (3.49)

which may be written in matrix notation as(
U

F

)
z=l

=

(
cos kl sin kl

EAk

−EAk sin kl cos kl

)(
U

F

)
z=0

(3.50)

giving an elegant method to compute the displacement and force at one end

of a beam given the displacement and force at the other. This can be further

transformed using the transformation k = iγ to give

U = − cos kz

EAk sin kl
= − cos iγz

EAiγ sin iγl
= − cosh γz

EAγ sinh γl
(3.51)

γ =

√
iCω

EA
− ω2ρ

E
=

√
iω

E

(
ıωρ+

C

A

)
(3.52)

and using the transformation EAk = iωZ0 to give

Z0 =
EA

iω
k = A

√
E2

(iω)2

iω

E

(
iωρ+

C

A

)
= A

√
E

iω

(
iωρ+

C

A

)
(3.53)

42



which results in the elegant transfer matrix(
U

F

)
n

=

(
cosh γL sinh γl

iωZ0

iωZ0 sinh γl cosh γL

)(
U

F

)
n−1

(3.54)

where

γ =

√
iω

E

(
ıωρ+

C

A

)
(3.55)

Z0 = A

√
E

iω

(
iωρ+

C

A

)
(3.56)

3.2.2 Mass-Spring-Damper Equivalent System

mi−1 mi mi+1ki

ci

kj+1

ci+1

L RR L

Figure 3.3: Element i within a mass-spring-damper system.

Similarly, a transfer matrix may be built for a mass-spring-dashpot

system described by the general differential equations

m
d2u

dt2
= −ku− cdu

dt
(3.57)

First, for a spring, from Newton’s second law, the force across the spring is

given by

miU
′′
i = FR

i − FL
i (3.58)

and when subject to harmonic motion, the acceleration is given by
(
d2z
dt2

)
i

=

ω2Ui, so

FR
i = −ω2miUi + FL

i (3.59)
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Assuming that there is zero strain across mass i, Ui = UR
i = UL

i , giving the

matrix: (
U

F

)R
i

=

(
1 0

−ω2mi 1

)(
U

F

)L
i

(3.60)

Similarly, if transmission of force is assumed between nodes, then the change

in displacement may be calculated

FR
i−1 = FL

i (3.61)

UL
i − UR

i−1 =
FR
i−1

ki
(3.62)

which gives the transfer matrix(
U

F

)L
i

=

(
1 1

ki

0 1

)(
U

F

)R
i−1

(3.63)

Combining these two matrices(
U

F

)R
i

=

(
1 0

−ω2mi 1

)(
U

F

)L
i

(3.64)

=

(
1 0

−ω2mi 1

)(
1 1

ki

0 1

)(
U

F

)R
i−1

(3.65)

=

(
1 1

ki

−ω2mi 1− ω2m
k

)(
U

F

)R
i−1

(3.66)

If a velocity dependent damper is placed in parallel with the spring,

then Equation 3.62 will change to

UL
i − UR

i−1 =
FR
i−1

ki + iωc
(3.67)

which gives the spring-damper transfer matrix(
U

F

)L
i

=

(
1 1

ki+iωc

0 1

)(
U

F

)R
i−1

(3.68)
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and when combined with the mass matrix, gives the final form of the mass-

spring-damper transfer matrix(
U

F

)
n

=

(
1 1

k+iωc

−ω2m 1− ω2m
k+iωc

)(
U

F

)
n−1

(3.69)

3.2.3 Solution Methodology

surface bit

m1 mi mn

Figure 3.4: Drillstring Model including the surface and bit boundary condi-
tions.

A 2× 2 transfer matrix for a system provides two equations for a sys-

tem of four unknowns, thus requiring two known boundary conditions – zero

displacement boundaries at the surface and the bit. The surface equipment is

modeled as a spring, representing the cables suspending the topdrive, and a

damper, representing the damping from the mass of the topdrive itself. Bit-

rock interaction is modeled through the use of a simple spring, with the spring

constant representing the elastic axial interaction of the bit and rock but not

the rock cutting process. The drillstring itself is composed of n beam elements,

each defined by the drillpipe’s damping factor – discussed in the next section

– and physical properties, and characterized by a transfer matrix Ai.

Given the two known boundary conditions, the other two unknown

conditions may be computed by assembling the transfer matrix for the en-
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tire drillstring. This is simply the product of all the transfer matrices of the

drillstring components (
U

F

)
bit

= An

(
U

F

)
n−1

(3.70)

= AnAn−1

(
U

F

)
n−2

(3.71)

... (3.72)

=
n∏
1

Ai

(
U

F

)
surface

(3.73)(
U

F

)
bit

= A

(
U

F

)
surface

(3.74)

A harmonic displacement or force input can then be assigned at one of the two

boundaries and the response of entire system efficiently computed. However,

this is only simple if the excitation is at the boundary. If the excitation, or

excitations, are input somewhere within the drillstring, then the process is

complicated unless an augmented transfer matrix is introduced.

3.2.4 Augmenting the Transfer Matrix

The 2×2 transfer matrix is a powerful tool to investigate the transmis-

sion of displacement and force through a system, but it does not easily allow

for input of arbitrary additional harmonic displacements or forces within the

system, as would be experienced in the case of an induced axial oscillator.

For this case, an external harmonic force or displacement may be input in the

system through the use of an augmented transfer matrix. A similar method

was used by Ceasu et al. to add point forces while assembling transfer matrices
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to describe rotating shafts (Ceasu et al., 2010). This method builds on this to

include both harmonic forces and displacements, all within a single matrix.

Beginning with a 2× 2 transfer matrix A, the relation between Un and

Un−1 and Fn and Fn−1 are given by

Un = A11Un−1 + A12Fn−1 (3.75)

Fn = A21Un−1 + A22Fn−1 (3.76)

An external force input, Fexternal, and an external displacement input, Uexternal

may be added directly to the respective equations if they are assumed to be

constant, harmonic, point sources. of the forms

uexternal(t) = u0 cos(ω0t+ φ) (3.77)

Fexternal(t) = f0 cos(ω0t+ φ) (3.78)

where ω0 is the harmonic frequency and φ is the phase. Applying the Fourier

transform at frequency ω = ω0 gives

Uexternal(ω) = πu0 (3.79)

Fexternal(ω) = πf0 (3.80)

and then adding to the respective equations gives

Un = A11Un−1 + A12Fn−1 + Uexternal (3.81)

Fn = A21Un−1 + A22Fn−1 + Fexternal (3.82)
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which may be written in a 3× 3 matrix form asU

F
1


n

=

 cosh γL sinh γL
iωZ0

Uexternal

iωZ0 sinh γL cosh γL Fexternal
0 0 1

U

F
1


n−1

(3.83)

If there is no external input that node n, these can be set to zero and the

transfer matrix behaves in an identical manner to a 2× 2 matrix.

3.3 Time Domain Modeling

The damped wave equation may be solved in the time domain using

the finitie difference method or a simplified form with an n-DOF mass-spring-

damper system to find the state space solution. The finite difference method

is presented first followed by the state-space solution.

3.3.1 Steady State Solution

In the case of the damped axial wave equation, the final time domain

solution is the sum of the steady state solution – which solves for the effects

of the constant force due to gravity, and the dynamic solution – which solves

for the effects of transient forces on the drillstring. To account for gravity, the

damped wave equation needs to be modified

∂2u(z, t)

∂t2
= v2∂

2u(z, t)

∂z2
− c∂u(z, t)

∂t
+ g (3.84)
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with the boundary conditions

u(z, 0) = 0 (3.85)

u(0, t) = 0 (3.86)

u(L, t) = u0(t) (3.87)

where v is the wave velocity and the c is the damping coefficient due to friction

v2 =
E

ρ
(3.88)

c =
µFn
ρA

(3.89)

The steady state solution does not depend on time, t, and is given by

v2∂
2s(z)

∂z2
= −g (3.90)

which, once proper boundary conditions are applied and including drillstring

buoyancy is given by

s(z) =
z

EA

[
w
(
L− z

2

)
− Ap(L)

]
(3.91)

for an untapered string, where w is the weight per unit length, L is the length

of the drillstring, A is the cross sectional area, and p(L) is the mud pressure at

depth L. For a tapered string, the solution is simply the piecewise summation

of the various components

s(z) = Σi
z

EAi

[
w
(
Li −

z

2

)
− Ap(Li)

]
(3.92)

For the remaining solutions, the steady state solution is neglected and only

the transient component computed. The complete solution may be assembled

as the sum of the steady state solution and the transient solution.
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3.3.2 Finite Difference Solution

The dynamic solution may be solved using a centered finite difference

approach. The first and second derivatives are approximated using the central

differences

∂2u(z, t)

∂t2
≈ un+1

i − 2uni + un−1
i

∆t2
(3.93)

∂2u(z, t)

∂z2
≈ uni+1 − 2uni + uni−1

∆z2
(3.94)

∂u(z, t)

∂t
≈ un+1

i − uni
∆t

(3.95)

where i is the discretization in space, z, and n is the discretization in time, t.

When substituted into the partial differential equation for the axial

damped wave equation, gives

un+1
i − 2uni + un−1

i

∆t2
= v2u

n
i+1 − 2uni + uni−1

∆z2
− cu

n+1
i − uni

∆t
+ g (3.96)

and simplifying

un+1
i =

1

1 + c∆t

((
v∆t

∆z

)2 (
uni+1 − 2uni + uni−1

)
+ 2uni − un−1

i + c∆tuni + g∆t2

)
(3.97)

The wave propagation velocity is constant for all elements, but the damping

factor c can be a function of depth.

Discretization in the spatial domain, z, is chosen to be equal to joint

length, ∆z = 30ft. Discretization in the time domain must smaller than the

time step necessary for a wave to propagate across an element, thus ∆t < ∆z
v
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and is chosen to be ∆t = ∆z
2v

. Future work may include optimization of the

time step to improve performance and accuracy.

In the torsional case, the finite difference approximation is given by

φn+1
i =

1

1 + c∆t

((
v∆t

∆z

)2 (
φni+1 − 2φni + φni−1

)
+ 2φni − φn−1

i + c∆tφni

)
(3.98)

3.3.3 State Space Solution

An alternative solution methodology in the Laplace domain may be

given by the state space solution of the approximation of the wave equation

– a series of mass-spring-dampers, as shown in Figure 3.5, which obey the

following equation

m
d2u

dt2
= −ku− cdu

dt
(3.99)

where, m is the mass of each element, k = EA
L

is the axial spring constant

or k = GJ
L

is the torsional spring constant, and c is the damping between

elements.

surface bit

m1 mi mnki

ci

ki+1

ci+1

Figure 3.5: Drillstring model consisting of a series of mass-spring-dampers and
arbitrary surface and bit boundary conditions.

For a n-DOF model, the motion of each mass may be described using

miüi = −ki−1 (ui − ui−1)− ui (ui − ui+1)− ciu̇i (3.100)
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and the transfer function may be obtained for an axial displacement source

at the bit and a zero displacement boundary condition at the rig. Therefore,

u1, ..., un−1 represent the motion of the n − 1 drillstring elements and un is

an ideal velocity source. This system can then be expressed as a series of n

second order differential equations in the form M ¨̃u+C ˙̃u+Kũ = k1e1φ1, where

e1 ∈ Rn is the standard basis vector, ũ = [u1, u2, ..., un] is the new state vector

with the axial displacements of n lumped masses and the M, C and K matrices

are the mass, damping and spring matrices defined as

M =

 m1

. . .

mn

 C =

 c1

. . .

cn

 (3.101)

K =


k1 + k2 −k2

... −ki−1 ki−1 + ki −ki
. . .

. . .

−kn kn

 (3.102)

Applying the Laplace transform and rearranging gives the transfer func-

tion of the plant which will be used in the subsequent control section.

Φ̃(s) = (Ms2 + Cs+K)−1k1e1
1

s
U(s), Y (s) = e>7 Φ̃(s)s (3.103)

G(s) =
Y (s)

U(s)
= k1e

>
7 (Ms2 + Cs+K)−1e1 (3.104)

This construct may be used in both the frequency domain, for con-

trol system design and system response, and in the time domain to analyze
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transient behavior. In the case of this dissertation, a commercial ODE solver,

Matlab ODE 45, is used to compute the inverse transform to the time domain.

3.4 Sources of Damping

Damping within the drillstring system comes from various sources and

needs to be accounted for. The broad categories of damping, as described by

Lee in his dissertation, are:

• Material hysteresis : internal damping within the steel structure itself can

either be described as a velocity, hence frequency dependent, damping

term or as a complex damping factor in the steel properties, E or G,

themselves.

• Friction with the borehole: this velocity dependent term can be modeled

in a variety of ways, including Coulomb friction, valid if the velocity

profile crosses zero in a cycle, and Streibeck fricton.

• Viscous friction with the borehole fluids : enforcing the no-slip condition

between the borehole fluid and the drillpipe body necessitates the ad-

dition of damping, which may be estimated through the addition of a

small mass to the moving drillpipe.

• Radiation of energy into the formation: the near wellbore formation is

able to absorb energy from vibration through the cross coupling of lateral

modes of vibration with the axial and torsional ones considered.
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3.4.1 Structural Damping

Damping within structures can also be expressed by using the complex

Young’s Modulus, Ẽ , which is given by

Ẽ = E(1− ηi) (3.105)

Where η is the structural damping coefficient and is simply twice the viscous

damping ratio, ζ, which can be measured for materials and typically varies

between 0.03 and 0.05 for steel (Han, et al., 2013). In this dissertation, a

value of η = 0.04 is used.

3.4.2 Equivalent Viscous Damping

Friction in an oscillating system can be modeled with an equivalent

viscous damping coefficient, as shown in Figure 3.6. The work done by a

damper per cycle in a harmonically forced system can be calculated using

Wd =

∫
Fddx (3.106)

Given that friction force is velocity dependent, Fd = C dx
dt

, and dx =(
dx
dt

)
dt. For harmonic motion with cyclic displacement amplitude X at steady

state x = X sin(ωt− φ), the equation becomes

Wd =

∫
Fddx =

∫ (
C
dx

dt

)
·
(
dx

dt
dt

)
(3.107)

= Cω2X2

∫ 2π
ω

0

cos2(ωt− φ)dt (3.108)

= πCωX2 (3.109)
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m
k

F (t)

(a) Oscillating mass with sliding friction coefficient µ.

mk

c

F (t)

(b) Equivalent system with damper element c modeling the action of friction.

Figure 3.6: Modeling friction as an equivalent damper.

Rearranging the derivative of the steady state displacement equation

ẋ = ωX cos(ωt− φ) (3.110)

= ±ωX
√

cos2(ωt− φ) (3.111)

= ±ωX
√

1− sin2(ωt− φ) (3.112)

= ±
√
X2 − x2 (3.113)

and applying in the force dampening equation

Fd = Cẋ = ±Cω
√
X2 − x2 (3.114)

gives

F 2
d

X2
= C2ω2

(
1− x2

X2

)
(3.115)

which may be rearranged as(
Fd
CωX

)2

+
( x
X

)2

= 1 (3.116)
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(a) Varying damping coefficient C.

Displacement Amplitude (X)
-0.1 -0.05 0 0.05 0.1

D
a
m

p
in

g
 F

o
rc

e
 (

F
d
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
X
2*X
X/2

(b) Varying displacement amplitude X.
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(c) Varying harmonic frequency ω.

Figure 3.7: For a normalized case, where C = 1, X = 1, ω = 1, the parameters
are varied in turn to demonstrate the effects on damping force. Total energy
dissipated by damping is defined the area of the inscribed circle.

giving the equation of an ellipse. The area within the ellipse is equal to the

energy dissipated by the viscous dampening.

As shown in Figure 3.7, doubling the damping coefficient C or fre-

quency ω only doubles the area inscribed in the ellipse, while doubling the

displacement amplitude X quadruples the area.
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The equivalent viscous dampening coefficient can then be written as

Wd = πCeqωX
2 (3.117)

and rearranging

Ceq =
Wd

πωX2
(3.118)

gives a form that relates the equivalent damping, the energy dissipated and

displacement. This will be combined with Coulomb friction in the next section

to give an estimate of damping coefficient.

3.4.2.1 Coulomb Friction

Equivalent friction in an oscillating system can be modeled through the

use of an equivalent viscous damping coefficient through, in this case, Coulomb

friction. A frictional force is a damping force, so the amount of work done per

cycle by damping, Wd, can be given by

Wd = 4

∫
Fddx = 4πcωX2 (3.119)

where Fd is the damping force, c is the coulomb damping, X is cyclic displace-

ment amplitude.

Now, by noting that the work done by a damping force is also the force

times distance, the equivalent damping factor can be found

Cc =
4Fc
πωX

=
4µFn
πωX

(3.120)

which is maximal at small displacements

lim
x→0

4µFn
πωX

→∞ (3.121)
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3.4.3 Radiation into the drilling fluid

Drilling fluids add mass to the system and can be modeled using the

following damping coefficient, as done by Lee (1991).

m′ = 2π(r0 + ri)

√
ρmµ

2ω
(3.122)

cm = 2π(r0 + ri)

√
ρmµω

2
(3.123)

where ρm and µ are the density and viscosity of the drilling mud, which is

assumed to be an incompressible Newtonian fluid, r0 and ri are the outer and

inner drillstring radii, and ω is the rotating frequency in radians per second.

The effect of vibration radiating into the near-wellbore rock formation has been

shown to several orders of magnitude smaller than other damping factors, and

will not be considered in this model.

3.4.4 Curve Trajectory and Torque and Drag Modelling

Wellbores are no longer simple vertical holes and have tortuosity. Torque

and drag due to friction with the wellbore walls needs to be taken into account

and is is not constant along the drillstring. Given a wellbore survey, the path

of the drillstring is interpolated using the minimum curvature method, as de-

scribed in (Sawaryn, et al., 2003) and presented in Appendix A. Once the

inclination of each of the drillstring elements is known, the torque and drag

can then be calculated be calculated.

Torque and drag loss due to drag along the borehole wall can approx-

imated by the following equations, as presented by Johancsik et al., for each
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drillpipe element.

Fn =
√

(Ft∆α sin θ)2 + (Ft∆θ +W sin θ)2 (3.124)

∆Ft = W cos θ ± µFn (3.125)

∆M = µFnr (3.126)

where Fn is the normal force of the drill string on the borehole wall, W is the

weight of the segment, Ft is the tensional force, r is the borehole radius, θ is

the vertical deviation and α is the horizontal angle. A closed form solution

only exists when α is constant or W is zero. Error in the calculation increases

as segment size increases, but is still within 1% if segments of 100 ft or less

are used (Johancsik, et al., 1984).

Fn can then be used as the estimate for normal force in the calculation

of the Coulomb friction factor, Cc, previously described.

59



Chapter 4

The Transfer Matrix Approach Applied to

Axial Drillstring Vibrations

4.1 Introduction

Over the years, there has been agreement over the fact that drillstring

vibrations are generally detrimental and should be understood and controlled.

Shock absorbing subs have been deployed to damp shocks coming from the bit

and systems have been introduced to control stick-slip oscillations, a low fre-

quency torsional vibration. Bottom hole assemblies (BHAs) have been tuned

to mitigate vibrations and to define critical speeds for operator to avoid. Oth-

ers have deployed axial oscillation tools (AOTs) to induce vibrations in efforts

to reduce torque and drag in deviated wells. In all cases, a clear understand-

ing of drillstring dynamics is crucial, as is the formulation of a model that can

efficiently predict downhole dynamics.

Using the transfer matrix approach, is possible to examine the drill-

string dynamic response to a harmonic input, either at a boundary or within

the drillstring itself. This chapter presents a series of case studies analyzing

model performance in comparison to field data with various input conditions.

First, periodic inputs are simulated at the bit, particularly due to bit-bounce,
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in a series of historic studies aimed at eliminating or minimizing bit-bounce.

Then high frequency downhole and surface data are analyzed to investigate

other forms of harmonic input, including stick-slip and bit chatter. Finally, the

placement and effect of AOTs is investigated, which have been used for friction

reduction, but placements and configurations have largely been due to empir-

ical evidence (Robertson et al., 2004; Clausen et al., 2014; Gee et al., 2015).

A series of case studies are then presented utilizing instrumented drillstrings.

4.2 Literature Review

Drillstring dynamics models range from lumped mass systems modeling

single vibration types – axial, torsional or lateral – to coupled models allowing

for interaction of the vibrational modes. The simplest models are just iner-

tial masses modeling the BHA with a spring and damper for the drillstring

(Navarro-López and Cortés, 2007; Rudat et al., 2011). These have been shown

to be effective in some applications of bit bounce or stick-slip, but often only

correctly model the first mode of vibration (Kyllingstad and Nessjøen, 2009;

Dwars et al., 2013). Higher order modes have been captured through the

addition of multiple lumped masses (Navarro-Lopez and Cortes, 2007; Nan-

dakumar and Wiercigroch, 2013) or through the application of Timoshenko

beam theory (Ghayesh, 2012; Chatjigeorgiou, 2013), but these models rapidly

become computationally intensive. An in-depth review of the current state of

drillstring modeling can be found in Chapter 2 as well as in two recent review

papers (Shor et al., 2014; Ghasemloonia et al., 2014).

61



Early axial vibration models, such as the one by Aarrestad et al., mod-

eled shock absorbers as spring and dashpot systems, and induced vibrations

as a sinusoidal input oscillating at three times the rotation rate at the bit,

simulating the three lobed pattern commonly associated with roller cone bits

(Aarrestad et al., 1986). Various forms of damping were assumed, including

viscous damping from the fluid in the wellbore, friction with the wellbore wall,

and losses to the shock absorber or the boundaries (bit or rig). Similar models

have been used for torsional vibration modeling, such as stick-slip modeling

(Brett, 1992). Stick-slip frequency has been shown to be a function of BHA

length rather than bit-rock interaction, rotary speed and bit type (Chen et al.,

2003). Tool joints have been found to play a role in higher frequency vibrations

and less so in low frequencies (Drumheller and Knudsen, 1995).

The propagation of axial waves in beams, investigated through a series

of articles by Drumheller in the 1980s and 1990s, details the transmission and

attenuation of sound waves within drillstrings. The pass and stop bands for

signals over 100 Hz was found to be highly dependent on the drillstring length

and compositions and presence of tool joints, but is not affected by drillstring

rotation (Drumheller and Knudsen, 1995). A series of experiments was con-

ducted in a successful effort to validate the acoustic model, both in a scale

laboratory model and in the field (Drumheller, 1989) and to estimate atten-

uation (Drumheller, 1993). Compressional waves are reflected when changes

in impedance are encountered, but by matching the impedance, the wave is

transmitted rather than reflected, a technique used by Drumheller to install
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acoustic repeaters in the drillstring (Drumheller, 2002) or in torsional vibration

mitigation (Dwars et al., 2013). Previous uses of the transfer matrix approach

include (Paslay and Bogy, 1963; Khan, 1986; Clayer et al., 1990; Han et al.,

2013).

Appropriate boundary conditions are explored by Clayer et al., who find

that modeling the rig as a mass-spring-damper system agrees well with mea-

surements, but significant uncertainty arises from the bit (Clayer et al., 1990).

A similar approach looks at the drillstring elements as sources of impedance

(Zamudio et al., 1987; Booer and Meehan, 1993; Reid and Rabia, 1995). A

similar method is used to investigate torsional vibrations by relating surface

conditions to the bit (Ertas et al., 2013). A model that couples axial, torsional

and lateral vibrations using transfer matrices introduces the idea of implement-

ing structural damping through the use of the complex Young’s Modulus (Han

et al., 2013). A similar technique was used by Rao for modeling attenuation of

acoustical signals through submerged pipes by using a complex wave number

(Rao, 1991).

A similar model was presented recently that is able to model vibration

in the drillstring within a vertical wellbore (Ghasemloonia et al., 2014) and

is widely used in other industries where rotating shafts are present (Chahr-

Eddine and Yassine, 2014). Harmonic point forces have been included recently

in transfer matrix models for shaft design problems (Ceasu et al., 2010). This

model extends those capabilities to the arbitrary wellbore through the use of
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viscous damping and also proposes a single three-by-three transfer matrix to

allow for arbitrary harmonic force and displacement inputs.

4.3 Axial Oscillation Tools

Tools which induce axial or torsional vibrations in drillstrings have

been referred to by a variety of names, including Drilling Agitator Tools

(DATs) (Baez and Barton, 2011; Barton et al., 2011b), Axial Oscillation Tools

(AOTs) (Alali et al., 2012), Pressure Pulse Friction Reducing Tools (PPFRTs)

(McCormick and Chiu, 2011), and Axial Oscillation Generator Tools (AGTs)

(Newman et al., 2009; Alali and Barton, 2011) in literature. They have typi-

cally been deployed while drilling deviated or horizontal wells to reduce friction

and improve weight transfer to bit in slide drilling scenarios with downhole

motors. Almost universally, they consist of a power section, typically a PWM

mud motor, and an oscillation section. These range from rotating masses to

pressure pulse generators. The focus for the remainder of this chapter will be

on these latter tools due to a series of field trials utilizing them.

4.3.1 Tool Design

Agitation tools considered herein typically consist of consist of three

assemblies: the power section, the valve assembly and the oscillating system.

The power section is a mud motor that consists of a rotor inside a stator in

the form of a Positive Displacement Motor (PDM). The choice of mud mo-

tor impacts the agitation frequency of the assembly. The valve, placed below
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Figure 4.1: Two views of a simplified representation of the rotor and stator in
the valve assembly of an agitator unit which generates a pressure pulse within
the drillpipe.
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the power section, creates pressure pulses that propagate axially. Pulses are

typically generated in the 12 to 19 Hz range and are converted to mechanical

motion by the oscillating assembly (Alali et al., 2012; Alali and Barton, 2011).

While running agitator tools in the drill string, maximum observed axial ac-

celeration was 4.5g, greater than the 3g observed in an offset well without

agitator tools. Average acceleration forces were equivalent at 2g (Alali and

Barton, 2011; Barton et al., 2011a).

Shock absorbers and shock subs were developed over fifty years ago and

have been often deployed to reduce axial vibrations in drillstrings, especially in

hard formations. Mathematical models describing them have existed since at

least 1970 (Kreisle and Vance, 1970; Parfitt and Abbassian, 1995). A series of

experiments in the late 1990s showed that axial vibration amplitude decreases

across the shock sub, but axial vibrations below the shock absorber and at the

bit remained the same as without the shock absorber (Warren et al., 1998).

Their dynamic behavior is well understood and for the majority of currently

available shock subs, the effective spring rate is constant over frequency –

something that was not true in the late 1980s (Skaugen and Kyllingstad, 1986;

Aarrestad et al., 1986).

Multiple patents have been filed with downhole agitator designs (Hopf

and Co, 2011; Seutter et al., 2012). A small scale laboratory experiment

verified that AOTs mitigate stick slip problems and that the stick slip regime

may be broken by application of a force greater than applied WOB. Also,

the higher the applied frequency, the greater the effectiveness of the AOT
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on breaking stick slip static friction (Forster, 2011), but also the higher the

attenuation of the vibration.

4.3.2 Field Experience

A study from the Haynesville pointed to a savings of $65,000 per well

drilled with a DAT in the BHA, with 35% higher ROP in the lateral section and

a 30% improvement in the build section. In the Eagle Ford, the addition of a

DAT during a problematic lateral drilling operation increased ROP threefold.

In the Barnett Shale, the use of DAT was shown to increase both footage and

ROP by 30% (Baez and Barton, 2011). Shell has successfully used agitators

to dramatically increase rate of penetration in horizontal sections and has

stressed the importance of pre and post well planning to optimize well design

(Dykstra et al., 2001; Falodun et al., 2005). Current practices in the Permian

Basin and in Appalachia include running AOTs to achieve longer laterals and

to improve steering abilities. Field experience has shown an inability to steer in

a horizontal well on a subsequent trip without an AOT to finish the remaining

1000 feet of a well.

4.3.3 Alternatives to AOTs

A widely used class of alternatives to AOTs are systems which slowly

rotate the drillpipe from surface in an oscillatory manner to reduce friction in

deviated or horizontal sections of the wellbore during sliding operations. These

systems incorporate a control loop which rotates the top drive, either for a
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known number of revolutions or until a set value of reactive torque is reached,

first in one direction and then the other, with the goal of rotating the entire

drillstring up to the bent motor assembly. These systems often include control

systems to maintain toolface – bent motor housing orientation – to effectively

steer. The two widely used systems, Canrig’s Rock-It and Schlumberger’s

Slider, are presented in two papers detailing the performance improvements

from several series of field trials (Gillan et al., 2011; Maidla et al., 2009).

These systems have the advantages of being surface controlled and thus only

be activated when needed during drilling operations, of not inducing additional

downhole vibrations during drilling (or pumping) operations, and are coupled

with steering control systems. However, they do have a maximal reach, limited

by the make up torque of connections during reverse rotation. AOTs have

the additional benefit of documented reductions in stick-slip, but are active

during all operations – not just steering – and do increase maximal shock loads

experienced by downhole tools (Clausen et al., 2014; Alali et al., 2012).

4.4 Model Formulation

The dynamic axial and torsional response of a drillstring in a curved

wellbore is modeled through application of the transfer matrix approach. This

produces a frequency domain solution in milliseconds that allows detailed sen-

sitivity studies to optimize BHA tuning and for determining the optimal place-

ment of AOTs.
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4.4.1 Transfer Matrix Approach

A continuous system can in general be simplified as a series of discrete

elements bounded by nodes. The forces and displacements at one node are

related to those at an adjacent node through a transfer function that is af-

fected by material and geometric properties. More specifically, the drillstring

can be idealized by combinations of beam elements and mass-spring-damper

elements. The derivations of the transfer matrices for similar elements have

been presented elsewhere (Lee, 1991; Ertas et al., 2013; Han et al., 2013). Full

derivations can be found in the preceding chapter but relevant formulas are

reprinted below.

4.4.1.1 Beam Element

The general solution to the one dimensional wave equation that de-

scribes propagation of a harmonic excitation at angular frequency along a

beam, including distributed viscous damping, can be solved in close-form with

suitable boundary conditions to yield the following transfer matrix relating

the displacement and force between two adjacent nodes, n and n− 1(
U

F

)
n

=

(
cosh(γL) sinh(γL)

iωZ0

iωZ0sinh(γL) cosh(γL)

)(
U

F

)
n−1

(4.1)

The coefficient γ and Z0 are defined as:

γ =

√
iω

E

(
iωρ+

C

A

)
(4.2)

Z0 = A

√
E

iω

(
iωρ+

C

A

)
(4.3)
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where U and F are the displacements and forces of nodes that define an element

of length L, cross sectional area A, Young’s modulus E, density ρ, damping

coefficient C and oscillation frequency ω.

4.4.1.2 Mass-Spring-Damper Element

The second order ordinary differential equation governing oscillation of

a mass-spring-damper with a harmonic excitation can be solved with appro-

priate boundary conditions to yield a similar transfer matrix(
U

F

)
n

=

(
1 1

k+iωc

−ω2m 1− ω2m
k+iωc

)(
U

F

)
n−1

(4.4)

where m is the mass, k is the spring constant and c is the damping coefficient.

4.4.2 Accounting for Damping

Within a vertical wellbore, the primary sources of damping are viscous

damping due to interaction with the drilling fluid, energy loss due to material

hysteresis, and radiation of energy into the formation. All three of these effects

can be modeled using velocity-dependent terms in the governing equations.

Damping due to radiation of energy into the near-wellbore rock formation is an

order of magnitude smaller than these effects and will be ignored (Lee, 1991).

A damping value of has been used for vertical wells based on experimental

published results from field experiments (Dareing and Livesay, 1968).

Once the borehole deviates from vertical, drillstring-borehole wall con-

tact must be considered. This interaction is considerably different than drillstring-

fluid interaction, and is typically modeled using a Coulomb friction approach
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(Johancsik et al., 1984; Sheppard et al., 1987). During a vibration cycle, the

energy loss results from a frictional force acting over the cumulative displace-

ment rather than a loss depending on velocity. This poses no great difficulty

for models that solve the vibration problem in the time domain (Dykstra, 1996;

Kieschnick et al., 2013), but the current model is focused on solutions in the

frequency domain. The model overcomes this difficulty using an equivalent

viscous damping coefficient that yields the same energy loss during a vibra-

tion cycle by summing the cumulative work done by friction during a cycle

(Thomson, 1996). The expression for Coulomb damping then, is given by

C =
4Fc
πωX

=
4µFn
πωX

(4.5)

where Fc is the contact force, which is the normal force, Fn multiplied by the

friction coefficient µ, and assumed displacement magnitude X. Normal force

may be calculated from hole inclination and an estimation of borehole contact.

The friction coefficient is not well quantified and varies with formation and

drilling fluid, but can be estimated using approaches employed in torque and

drag models (Johancsik et al., 1984; Hu et al., 2012; Tikhonov et al., 2014).

The displacement magnitude may be varied to tune the model to match field

predictions but is closely related to the displacement at the excitation source,

be it bit bounce or induced oscillations. In this model, the friction coefficient, µ

will be varied along the wellbore, with a different value used for the drillstring

within casing and within open hole.
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4.4.3 Excitation Sources within the Drillstring

Most transfer matrix models that have been described in the literature

assume a harmonic input at one end, the effect of which is transferred between

nodes via the transfer matrices. Boundary conditions are enforced by solving

for the forces at the boundaries based on either the force or displacement

assumed at the harmonic input node. The current model, shown in Figure

3.4, expands this by allowing the excitation source to be placed anywhere

within the drilling system, as shown in Figure 4.2.

surface bit

m1 mi mn
SS

AOT

Figure 4.2: Drillstring model with fixed displacement boundaries and an os-
cillation source somewhere within the string (here shown as AOT + shock
sub).

The general solution approach is the same, but with a three by three

augmented transfer matrixU

F
1


n

=

 cosh γL sinh γL
iωZ0

Uexternal

iωZ0 sinh γL cosh γL Fexternal
0 0 1

U

F
1


n−1

(4.6)

where the external displacement is zero and the external force is given by

Fext = |F |eiωt (4.7)

and the magnitude of the exerted force at the axial oscillator is given by the

pressure drop across a nozzle for a Newtonian fluid (Robinson, 2010) multiplied

72



by the open area of the shock absorber

∆P =
ρmud ×Q2

12032× Cd × A2
(4.8)

Fext = ∆P × SSopenarea (4.9)

where A is the flow area for flow through a nozzle, Q is the flow rate and Cd

is the nozzle efficiency, values of which typically range between 0.9 and 0.95.

Displacement at the excitation source must remain continuous to re-

tain model physicality. A jump discontinuity is introduced in the force, with

magnitude equal to the force exerted at the node. Enforcing these conditions

at the excitation node and zero displacements at the boundary, allows the

response along the entire drillstring to be obtained.

4.5 Visualizing Excitation and Optimizing Placement

Once the boundary conditions are determined, the response – the dis-

placement and force of each node – of the entire drillstring may be determined.

These computed responses are complex, so it is necessary to understand their

meanings.

The input in to the model – the harmonic oscillation either at the bit

or at the axial oscillation tool – is assumed to be a real amplitude oscillating

at a specified frequency, ω. A complex number can be regarded equivalently

– as a having an amplitude and a phase. Within the model, there can be

both standing waves, those that whose peaks and troughs do not move, and

traveling waves, those that do move. Figure 4.3 shows sample output from the

73



-0.2 -0.1 0 0.1 0.2

Displacement (in)

-18000

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

M
e
a
s
u
re

d
 D

e
p
th

 (
fe

e
t)

Vibration Displacement

 vs. Measured Depth

-2 -1 0 1 2

Force (lbf) ×10
4

-18000

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

Axial Force 

vs. Measured Depth

-4 0 4

Radius (in)

-18000

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

Pipe 

Dimensions

0 10000

Force (lbs)

-18000

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

Normal 

force

0 100

Degrees

-18000

-16000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0
Inclination

Figure 4.3: Model output: from left to right: (1) displacement and (2) force at
each node along the drillstring, (3) dimensions of the drillstring, (4) computed
normal force along the drillstring due to hole inclination and tension and (5)
hole inclination.

transfer matrix model. The first two plots show the displacement and force

along the drillstring, both as an amplitude – the green and blue curves – and as

traveling waves – those curves between the positive and negative amplitudes.

Displacement amplitude along the drillstring is useful to compute ac-

celerations along the drillstring due to the harmonic input using the familiar

formula

d2x

dt2
= ω2U (4.10)

Force amplitude along the drillstring is useful to compute the percent-

age of the drillstring experiencing sufficient force to overcome static friction.

Static friction along the wellbore is simply the coefficient of static friction, µs,
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Figure 4.4: Optimizing the location of the axial oscillation tool.

multiplied by the normal force at each node, which has already been computed.

Thus, if

|Fcalc| >= µsFn (4.11)

then the node is considered to be experiencing dynamic friction rather than

static friction. Tool placement may be optimized by iterating through a series

of depths of interest – usually along the lateral section of a well – and for a

range of agitator - bit distances and computed the percentage of drillstring

experiencing dynamic friction. Example output is shown in Figure 4.4 which

shows graphically regions where dynamic friction is maximized.
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4.6 Verification of Model Mechanics

4.6.1 Validation with analytic solutions

The analytic solution is known for the axial vibration of a uniform rod

fixed at one end which is a close approximation for a vertical wellbore with the

string off bottom. The system can be described using the general equation

∂F

∂z
= EA

∂2u

∂z2
= ρA

∂2u

∂t
(4.12)

SPE/IADCX173121XMS& & 7&

 
Figure 3 The normalized displacements and forces for a simple drillstring in a perfectly vertical wellbore with an agitator 
placed either halfway (right plots) or at the bit (left plots) agitating at the first 7 natural frequencies as calculated analytically. 
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Figure 4.5: The normalized displacements and forces for a simple drillstring
in a perfectly vertical wellbore with an agitator placed either halfway (right
plots) or at the bit (left plots) agitating at the first 7 natural frequencies as
calculated analytically.
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where ρ is the mass density, A is the cross sectional area and u is the displace-

ment. Solving this by separation of variables gives

u = Σ∞n=1

(
Cn sin

ωnz

v2
+Dn cos

ωnz

v2

)
cos (ωnt+ Ωn) (4.13)

where v2 = ρ
E

. Applying the following boundary conditions 1. u = 0 at z = 0

2. u′ = 0 at z = l Gives a natural frequency of

ωn =

(
n+

1

2

)
π

√
E

ρl2
(4.14)

Running the model with n ∈ {0, 1, 2, 3, 4, 5}with the harmonic excita-

tion location either at the center or at a boundary and applying equivalent

spring reactions at both boundaries, the anticipated node shapes are formed,

as shown in Figure 4.5.

4.6.2 Comparison with a commercial code implementation

ViBounce is an internal drillstring dynamics code used with Shell which

was developed in the late 1980s and early 1990s and first deployed in 1992.

Today it exists as the bit bounce prediction portion of the Shell IDM Kernel.

ViBounce serves as the original inspiration for the axial vibration code, albeit

in a simplified vertical wellbore with constant damping, and has been shown

to be effective at predicting bit bounce. Several case studies, compiled with

the assistance of Mark Dykstra, have been published as part of an investiga-

tion into axial drillstring vibration, segments of which are reproduced in the

following sections (Shor et al., 2015a).
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Tricone bits are known to be prone to bit bounce and generate a har-

monic oscillation input at the bit, the frequency of which can be quantified

as

ω = RPM · 2π · 3
60

= RPM · π
10

(4.15)

The transfer matrix solution relating the surface and the bit is given by(
a11 a12

a21 a22

)
=

surface∏
bit

Ai (4.16)

and given a surface impedance of

z0 = ksurf + smassω
2 (4.17)

the bit impedance can be computed using

zbit =
a11 + a12z0

a21 + a22z0

(4.18)

a
2

a
1

φ 

a1sin(ωt)
a2sin(ωt+φ)

φ 

Figure 4.6: The phase difference between two sinusoid curves, φ. If φ > 90o,
then both curves are increasing for a period of time. If these two curves are
taken to be torque and rpm, then energy is injected into the system if both
are increasing.

78



Component
Length

(ft)
OD
(in)

ID
(in)

Number
of Joints

OD of
Joints
(in)

Weight
per Foot

(lbf)

Spring
Constant
(lbf/in)

Drill Pipe 3000 5 4 95 5 24.03 0
Drill Pipe 5000 5 4.276 159 5 17.93 0
Heavy Weight

Drill Pipe 90 5 2.875 2 5 44.68 0
Drill Pipe 300 6.5 2.875 9 6.5 90.74 0
Shock Sub 7.2 8.25 2.8125 0 8.25 0 7.50× 104

Drill Pipe 90 6.5 2.875 2 6.5 90.74 0
Bit 0 8.5 0 0 0 0 2.85× 106

Table 4.1: Drillstring components used in the ViBounce comparison case

Parameter Value

Weight of surface equipment (lbs) 35,000
Number of lines 10
Diameter of lines (in) 1.5

Table 4.2: Additional model parameters

The phase difference between the displacement and force at the bit can then

be computed from the angle the bit impedance makes in the complex plane

φ = tan−1 Im(zbit)

Re(zbit)
(4.19)

The phase plot generated by the current model is compared with the

phase plot generated by a commercial code used at Shell, ViBounce, to ensure

the models agree and the results are shown in Figures 4.7 and 4.8, based on

the parameters listed in Tables 4.1 and 4.2.
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(a) Phase diagram for the example drillstring in Table 4.1, as presented
in the 1992 ViBounce report.
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(b) Phase diagram for the same drillstring as generated by the base
matlab implementation.

Figure 4.7: Computed phase angle vs drilling rpm for the demonstration case
presented in the 1992 ViBounce report for three different values of constant
damping along the drillstring.
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Figure 4.8: Computed phase angle vs drilling rpm for the demonstration case
presented in the 1992 ViBounce report with three different length drill collars
between the bit and shock absorber.
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4.7 Model Application 1: Diagnosis and Prevention of
Roller Cone Bit Bounce

Roller cone bits (RC bits) have an exhibited tendency to generate axial

vibrations and has been well studied in the past (Wolf et al., 1985; Macpherson

et al., 1993). The rolling cones lead to cyclic engagement and disengagement of

milled teeth or inserts on each cone, generating axial vibration energy which

may excite natural frequencies in the drillstring. As shown in Figure 4.9,

downhole measurements of forces and motions in the bottom hole assembly

have shown that dynamic axial loads can reach several times the nominal

weight-on-bit indicated at the surface (Deily et al., 1968; Wolf et al., 1985),

and that during these situations the bit can lift off the hole bottom and come

crashing back down, a phenomenon referred to as bit bounce. Impact loads

of this magnitude can cause catastrophic failure of inserts, and strings of bit

failures led to the development of axial dynamics models in attempts to predict

and mitigate its occurrence.

Bit bounce is often associated with resonance – situations where the

frequency of the axial vibration input of the bit-rock interaction coincides with

a natural frequency of axial vibration in the drillstring. Field measurements

have shown that the primary excitation frequency for roller cone bits is 3N,

where N is the bit rotation speed. One approach for avoiding bounce is to

compute the axial natural frequencies of the drilling system and try to avoid

rotation speeds that would cause 3N to coincide with one of these natural

frequencies. The natural frequencies depend on the boundary conditions at the
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bit and the surface (Clayer et al., 1990), and a common approach is to treat the

bit as free at the bit-rock interface and fixed at the surface (Deily et al., 1968).

This model is different in that it focuses on the phase difference between the

harmonic force input and resulting displacement at the bit (Nicholson, 1986;

Kriesels et al., 1999). This angle is related to the energy transfer between

the excitation and the response (Den Hartog, 2013), and if greater than a

threshold value the trilobed bottomhole pattern may form in competent rock.

Bit bounce is often associated with resonance; that is, a situation where the frequency of the axial
vibration input of the bit-rock interaction coincides with a natural frequency of axial vibration in the
drillstring. Field measurements have shown that the primary excitation frequency for roller cone bits is
3N, where N is the bit rotation speed. One approach for avoiding bounce is to compute the axial natural
frequencies of the drilling system and try to avoid rotation speeds that would cause 3N to coincide with
one of these natural frequencies. The natural frequencies depend on the boundary conditions at the bit and
the surface (Clayer et al., 1990), and a common approach is to treat the bit as free at the bit-rock interface
and fixed at the surface (Dareing, 1984). The approach used in this work is somewhat different in that it
focuses on the phase difference between the harmonic force input and resulting displacement at the bit
(Nicholson, 1986; Kriesels, et al., 1999). This angle is related to the energy transfer between the excitation
and the response (Den Hartog, 1985), and if greater than a threshold value the trilobed bottomhole pattern
may form in competent rock.

Case Study 1: Offshore Australia
A drilling campaign in the Browse Basin of North West Australia involved drilling a 17.5!. vertical hole
section from a semi-submersible rig in 466 m water depth. While drilling hard calcareous claystone at a
bit depth of 3,299 m severe axial vibration (“massive bit-bounce”) was observed at the surface. Operating
details are provided in the BHA run report in Figure 4B. The rotary speed during the run was 35-40 RPM.
Higher speeds were not used because the appeared to make drilling even rougher. The bit drilled 22 m at
an average penetration rate of 1.32 m/h and was pulled for penetration rate (PR) and axial vibration. The
dull photos in the figure show broken inserts consistent with severe axial impact loads during bounce
episodes.

Figure 3—Examples of downhole measurements of weight- and torque-on-bit showing sequential loading and unloading, or “bounce”.
Peak loads during bounce events can be several times the nominal weight-on-bit indicated at the surface. (3a from Deily, et al.; 3b from
1968; Wolf, et al., 1985).

6 SPE/IADC-173121-MS

Figure 4.9: Examples of downhole measurements of weight- and torque-on-
bit showing sequential loading and unloading, or ’bounce’. Peak loads during
bounce events can be several times the nominal weight-on-bit indicated at the
surface. (3a from (Deily et al., 1968); 3b from (Wolf et al., 1985)).

Presented below are summaries of two case studies compiled with the

help of Mark Dykstra and previously published (Shor et al., 2015a).
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4.7.1 Case Study 1: Offshore Australia

During a drilling campaign in Northwest Australia in the Browse Basin,

severe axial vibration was observed at surface while drilling a 17.5” vertical hole

section through a hard calcareous claystone with a tricone bit. The drilling

rotary rate was low – 35-40 RPM – and an attempt to increase RPM resulted

in observedly higher vibrations. After drilling 22 meters at an average penetra-

tion rate of 1.32 m/h, the bit was pulled with significant damage. An analysis

was conducted using the model with the drillstring as it had been run, with

results shown in Figure 4.11a, predicts severe bit bounce within the operating

window.

(A)

(B)

(C)

(D)

(A) (B)

(a) Photos of the first bit showing significant damage.

(A)

(B)

(C)

(D)

(A) (B)

(b) Photos of the second bit showing little damage.

Figure 4.10: Photos of the drillbits after drilling, the first exhibited severe
axial vibration while the second used the optimized drillstring design as rec-
ommended by the drilling team.
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(a) Phase diagram for the original drillstring which exhibited severe
axial vibrations in Austria.

(A)

(B)

(C)

(D)

(A) (B)

(b) Phase diagram for the second drillstring which included a down-
hole motor in Australia, showing no predicted axial vibration in the
operating window.

Figure 4.11: Phase diagrams for the original and revised drillstrings run in
Australia, the first exhibited severe axial vibrations while the second did not.
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To increase downhole RPM, a 9.625” motor was added to the BHA for

the next run, and a bit design with a more robust cutting structure was used to

decrease the likelihood of insert breakage. Much less vibration was reported

and performance was improved and agrees with the predictions, shown in

Figure 4.11b. A visual inspection of both bits, shown in Figure 4.10 shows clear

damage to the first one, caused by severe bit bounce, while the second exhibits

very little wear. The additional 200 RPM provided by the motor shifted the

excitation frequency such that the phase angle was below the threshold over

a wide range of surface rotary speeds.

4.7.2 Case Study 2: Onshore New Mexico

In a drilling campaign in New Mexico, USA, significant axial vibration

was encountered when drilling a shallow 14.75” vertical hole section through

hard, interbedded sequences of clastics and carbonates. The phase diagram

showed that significant bit bounce would likely be encountered throughout

the interval, especially as the formations transitioned from hard rock to soft

rock. A shock absorber was added near the bit which significantly improved

the operating window. However, it is noted that shock absorbers are not the

solve all for axial vibrations problems – by simply shifting the shock absorber

further away from the bit, the phase diagram becomes worse than without one

at all. The reader is referred to the paper for full details (Shor et al., 2015a).
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4.8 Model Application 2: High-frequency Vibration Anal-
ysis

Further validation is demonstrated by comparing model predictions

to high-frequency measurement of vibration data; the vibrations measured

here result from the drilling process with no additional excitation purposely

applied to the string. Two cases are presented, one focusing on high-frequency

downhole data, and the other on surface vibration data. In the first case, the

sensing location is near the bit within the BHA, and thus the frequency peaks

are dominated by BHA resonance and bit-rock interaction. In the second

case, the frequency peaks are dominated by the drillstring and are much more

dependent on the drillstring length.

4.8.1 Case Study 1: High-frequency downhole vibration data

In the last few years it has become increasingly common to use commer-

cially available memory-based downhole vibration data loggers to gain greater

understanding of drilling processes and dysfunctions. The compact size of

these tools allows strategic placement at various locations of interest along the

string with minimum impact on drilling operations.

Two sets of memory-based downhole vibration data, acquired using

different commercially available Dynamic (or/and Downhole) Data Recorders

(DDR) tools, are utilized in the field examples presented in the following two

sections: one recording continuous high-frequency data (presented here), and

one with records of processed data only (presented in the next section). Both
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tools allow for detailed post-well analysis, however only the high-frequency

data set allows for spectral analysis.

A dataset containing continuous 50Hz downhole data recorded by a

commercial DDR device (Desmette et al., 2005) was obtained as part of a

drilling optimization effort in the Permian basin. The dataset focuses on a 8”

vertical section and was analyzed to determine the frequency content of the

axial and torsional vibrations experienced during the drilling process.

The frequency spectrum maps shown in Figure 4.12 and Figure 4.13

were obtained by calculating the Fast Fourier Transforms (FFTs) of data ex-

tracted from the 50 Hz downhole time histories every 50 feet. Low frequency

(1 - 3 Hz) peaks that appear in the torsional data are likely due to bit-rock

interaction since a majority of the section was drilled with a bit speed of ap-

proximately 120 RPM (i.e. 2 Hz). Higher frequency peaks, between 12 Hz and

15 Hz for the axial accelerometer and near 11 Hz for the torque sensor, are due

to structural resonances in the BHA. As illustrated in Figure 4.12, this higher

frequency content is highly correlated to formation lithology. By comparing

the formation tops with the frequency intensity mapping, the Bushy Creek

and Upper Avalon Carbonates can easily be picked out.

Applying the model over a range of frequencies for an input force ap-

plied at the bit, it is also possible to construct frequency intensity maps. The

predicted results shown in this manner, using carefully selected bit spring con-

stants to characterize the various formations, are displayed in Figure 4.12. Not
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only the model is able to reproduce the lithology contrast observed in the field

data, but also the values of the peak frequencies match well the field.

Two sets of memory-based downhole vibration data, acquired using different commercially available
Dynamic (or/and Downhole) Data Recorders (DDR) tools, are utilized in the field examples presented in
this paper: one recording continuous high-frequency data (utilized in the present model application), and
one with records of processed data only (utilized in the third model application). Both tools allow for
detailed post-well analysis, however only the high-frequency data set allows for spectral analysis.

For the current study, the authors utilized a dataset containing 50Hz downhole data recorded
continuously during the course of drilling the well by a commercial DDR device (Desmette et al., 2005)
as part of a drilling optimization effort for an application in the Permian basin. The dataset utilized here
focuses on a 8 ¾” vertical section. The high-frequency data set was analyzed to determine the frequency
content of the axial and torsional vibrations experienced during the drilling process.

The frequency spectrum maps shown in Figure 7 and Figure 8 were obtained by calculating the Fast
Fourier Transforms (FFTs) of data extracted from the 50 Hz downhole time histories every 50 feet. Low
frequency (1 – 3 Hz) peaks that appear in the torsional data are likely due to bit-rock interaction since a
majority of the section was drilled with a bit speed of approximately 120 RPM (i.e. 2 Hz). Higher
frequency peaks, between 12 Hz and 15 Hz for the axial accelerometer and near 11 Hz for the torque
sensor, are due to structural resonances in the BHA. As illustrated in Figure 7, this higher frequency
content is highly correlated to formation lithology. By comparing the formation tops with the frequency
intensity mapping, the Bushy Creek and Upper Avalon Carbonates can easily be picked out.

Figure 7—The frequency spectrum of the continuous downhole RPM (A), showing resonance frequencies for depths from 4,500 feet to
10,000 feet. Low frequency peaks are associated with the rotary drilling operations – peaks are integer multiples of bit rotation
frequency, while higher frequency peaks are due to bit-rock interaction. Model predictions are shown (B) show a frequency match at
13-15 Hz with proper choice of bit-rock interaction parameter.
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Figure 4.12: The frequency spectrum of the continuous downhole RPM (A),
showing resonance frequencies for depths from 4,500 feet to 10,000 feet. Low
frequency peaks are associated with the rotary drilling operations – peaks are
integer multiples of bit rotation frequency, while higher frequency peaks are
due to the first BHA resonance coupled with a changing bottom condition –
the bit-rock interaction. Model predictions are shown (B) show a frequency
match at 13-15 Hz with proper choice of bit-rock interaction parameter – the
spring stiffness.

This downhole data will be contrasted with surface data in the next

section and will show the dependence of the frequency spectrum on sensor

location. For a sensor located near the bit, the spectrum is dominated by the

resonances of the BHA and bit-rock interaction. The BHA remains constant

during the duration of a bit run, thus frequency shifts indicate formation

changes and can be used to identify formation tops (Al-Shuker et al., 2011;

Esmaeili et al., 2012). Moving the sensing location away from the BHA will
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Applying the model over a range of frequencies for an input force applied at the bit, it is also possible
to construct frequency intensity maps. The predicted results shown in this manner, using carefully selected
bit spring constants to characterize the various formations, are displayed in Figure 8. Not only the model
is able to reproduce the lithology contrast observed in the field data, but also the values of the peak
frequencies match well the field.

This downhole data will be contrasted with surface data in the next section and will show the
dependence of the frequency spectrum on sensor location. For a sensor located near the bit, the spectrum
is dominated by the resonances of the BHA and bit-rock interaction. The BHA remains constant during
the duration of a bit run, thus frequency shifts indicate formation changes and can be used to identify
formation tops (Al-Shuker et al., 2011; Esmaeili et al., 2013). Moving the sensing location away from the
BHA will shift the resonance frequencies recorded to those dominated by the drill pipe and will thus
evolve with depth.

High frequency surface vibration measurements
Surface drilling data are typically recorded at 0.1-1 Hz, but the underlying sensors typically sample at
much higher rates and compute statistics that are recorded. State-of-the-art top drives currently deployed
have the ability to record rotary speed and torque at frequencies up to 200 Hz and have been used for
stick-slip mitigation (Kyllingstad & Nessjøen, 2009; Runia et al., 2013). One such dataset was made
available to the authors contained 200 Hz data of RPM and torque for two depth intervals of a 16! section
of a difficult well.

Unlike the downhole data presented in the previous example, where the data were dominated by the
resonances of the BHA and did not evolve with depth, this data set shows a clear evolution. The
resonances are dominated by the length of drill pipe and shift to lower frequencies as hole depth increases.
Presented in Figure 9 are the frequency spectra of two different depth intervals of data recorded at 200
Hz. Only the first 10 Hz are shown due to the high amount of noise and loss of signal in the higher
frequencies. A clear evolution with depth is seen, with predominant frequency content shifted towards the
lower range. No evidence is seen to indicate any effect of formation lithology, supporting the claim that

Figure 8—In contrast, the power spectrum of downhole torque (A) shows a steady downhole resonance around 11 Hz as well as lower
frequency resonance related to bit ration. The predicted frequency spectrum (B) shows a frequency match at 10 Hz.
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Figure 4.13: In contrast, the power spectrum of downhole torque (A) shows a
steady downhole resonance around 11 Hz as well as lower frequency resonance
related to bit ration. The predicted frequency spectrum (B) shows a frequency
match at 10 Hz.

shift the resonance frequencies recorded to those dominated by the drill pipe

and will thus evolve with depth.

4.8.2 Case Study 2: High frequency surface vibration measure-
ments

Surface drilling data are typically recorded at 0.1-1 Hz, but the under-

lying sensors typically sample at much higher rates and compute statistics that

are recorded. State-of-the-art top drives currently deployed have the ability

to record rotary speed and torque at frequencies up to 200 Hz and have been

used for stick-slip mitigation (Kyllingstad and Nessjøen, 2009; Dwars et al.,

2013). One such dataset contained RPM and torque data sampled at 200Hz

for two depth intervals of a 16” section of a difficult well.

90



the drill pipe dominates the frequency response at the surface. The corresponding results from the
simulation are shown to the right and display a similar evolution of frequency with depth.

These two examples show that care must be taken when analyzing high frequency vibration data and
that resonances of both the drill pipe and the BHA must be considered. Drillpipe resonances are dominated
by its evolving length, while the BHA resonance is both a function of its composition as well as the
lithology of the formation being drilled.

Model Application 3: Axial Oscillation Tool Effectiveness and Placement
Axial oscillation tools are sometimes added to drillstring designs in efforts to reduce the effects friction
between the drillstring and the borehole by inducing axial oscillations whenever circulating. Frictional
torque and drag within the wellbore are detrimental to the transmission of torque and weight from the
surface to the bit, especially while sliding during geosteering operations, and significantly reduce the
efficiency of the drilling process and limit the reach of deviated wells.

In the application presented in what follows, the AOT consists of three assemblies: the power section,
the valve assembly and the oscillating system. The power section is a mud motor that consists of a rotor
inside a stator in the form of a Positive Displacement Motor (PDM). The choice of mud motor impacts
the agitation frequency of assembly. The valve, placed below the power section, creates pressure pulses
that propagate axially. Pulses are typically generated in the 12 Hz to 19 Hz range and are converted to
mechanical motion by the oscillating assembly (Azike-Akubue et al., 2012; Al Ali et al., 2011). AOTs are
often deployed with a shock absorbing sub directly above or below it to damp the vibration effect. While
running these tools in the drill string, the maximum observed axial acceleration was 4.5 g, greater than
the 3 g observed in an offset well without agitator tools, however average acceleration forces were
equivalent to 2 g (Al Ali et al., 2011; Barton et al., 2011; McCarthy et al., 2009). Previous models have
typically computed the effective friction coefficient due to the presence of the tool within the string

Figure 9—Surface frequency content from topdrive data (left) and corresponding simulation data (center and right).
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Figure 4.14: Surface frequency content from topdrive data (left) and corre-
sponding simulation data (center and right).

Unlike the downhole data presented in the previous example, where the

data was dominated by the resonances of the BHA and did not evolve with

depth, this data set shows a clear evolution. The resonances are dominated by

the length of drill pipe and shift to lower frequencies as hole depth increases.

Presented in Figure 4.14 are the frequency spectra of two different depth in-

tervals of data – at 10300 feet and 12700 feet – recorded at 200 Hz. Only the

first 10 Hz are shown due to the high amount of noise and loss of signal in

the higher frequencies. A clear evolution with depth is seen, with predominant

frequency content shifted towards the lower range. No evidence is seen to indi-

cate any effect of formation lithology, supporting the claim that the drill pipe

dominates the frequency response at the surface. The corresponding results
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from the simulation are shown to the right and display a similar evolution of

frequency with depth.

These two examples show that care must be taken when analyzing high

frequency vibration data and that resonances of both the drill pipe and the

BHA must be considered. Drillpipe resonances are dominated by its evolving

length, while the BHA resonance is both a function of its composition as well

as the lithology of the formation being drilled.

4.9 Model Application 3: Axial Oscillation Tool Effec-
tiveness and Placement

Axial oscillation tools are sometimes added to drillstring designs in ef-

forts to reduce the effects friction between the drillstring and the borehole by

inducing axial oscillations whenever circulating. Frictional torque and drag

within the wellbore are detrimental to the transmission of torque and weight

from the surface to the bit, especially while sliding during geosteering opera-

tions, and significantly reduce the efficiency of the drilling process and limit

the reach of deviated wells.

4.9.1 Case Study 1: Horizontal well with an axial oscillation tool
and multiple measuring subs

For this model application, a set of downhole data was used derived

from an instrumented drillstring with multiple DDRs inserted at different lo-

cations along the string, on a well for which the BHA picked up after kick-off
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accommodates an AOT. This setup allowed for the comparison of a BHA with-

out an AOT higher in the hole with another BHA with an AOT in the lower

section. Survey data was also included in the set of data.

When continuous high-frequency data is not available, as in this case, a

great deal of useful downhole information can still be gathered using processed

a.k.a. reduced data (also referred to as statistical data). Examples of DDR

devices offering such capability are found in the literature (Barton et al., 2009;

McCarthy et al., 2009; Hoffmann et al., 2012). These devices typically process

high-frequency raw data downhole and store reduced values such as average,

minimum, maximum, standard deviation and RMS values calculated over a

predefined time window. The processed vibration data was obtained from a

pair of DDR devices included in the string at two different locations, one in an

upper location, and one closer to the bit, as shown in Figure 4.15. The device

closer to the bit is located right above the AOT when the AOT is present. In

the figures that follow, these two DDRs are referred to as the upper and lower

DDR, where the latter is one closer to the bit and just above the AOT when

present.

The primary goal for the analysis is to evaluate the model by focusing

on the attenuation of axial drilling and AOT-induced vibrations along the

string. A secondary goal is to contrast the cases with and without an AOT

in the string, and compare with expected behavior from rough estimates and

field data previously published. To assess the attenuation of axial vibration

along the string, a convenient parameter to examine is ZU/L, the ratio of the
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(Newman et al., 2009), but made no attempt to optimize placement. The model presented in this paper can
shed useful insights on the effect of AOT placement.
Horizontal well with an axial oscillation tool and multiple measuring subs
For this model application, the authors benefited from a set of downhole data stemming from an
instrumented drillstring with multiple DDRs inserted at different locations along the string, on a well for
which the BHA picked up after kick-off accommodates an AOT. This setup allowed for the comparison
of a BHA without AOT higher in the hole with another BHA with AOT in the lower section. Survey data
were also included in the set of data.

When continuous high-frequency data are not available (as it was the case in the first example in this
section), a great deal of useful downhole information can still be gathered using processed a.k.a. reduced
data (also referred to as statistical data). Examples of DDR devices offering such capability are found in
the literature (Barton et al., 2009; McCarthy et al., 2009; Hoffmann, 2012). These devices typically
process high-frequency raw data downhole and store reduced values such as average, minimum, maxi-
mum, standard deviation and RMS values calculated over a predefined time window. The processed
vibration data provided to the authors for this study was obtained from a pair of DDR devices included
in the string at two different locations, one in an upper location, and one closer to the bit, as shown in
Figure 10. The device closer to the bit is located right above the AOT when the AOT is present. In the
figures that follow, these two DDRs are referred to as the upper and lower DDR, where the latter is one
closer to the bit and just above the AOT when present.

With this data set in hand, the primary goal for the analysis is to evaluate the model by focusing on
the attenuation of axial drilling and AOT-induced vibrations along the string. A secondary goal is to
contrast the cases with and without an AOT in the sting, and compare with expected behavior from rough
estimates and field data previously published. To assess the attenuation of axial vibration along the string,
a convenient parameter to examine is ZU/L, the ratio of the axial acceleration measured by the upper AOT
to that measured by the lower AOT, expressed in RMS, and corrected from biases in the data. The RMS
ratio can be expressed as

(9)

The recording tools were run after the well was landed in the target formation in the lateral section.
Since the DDR devices were upstring from the bit, early in the run they are still located in the vertical
portion of the well while the bit is making hole in the lateral section. As drilling progresses the DDR
devices enter the build section first and later on the lateral. Therefore, the inclination of the hole and thus
the inclination of the recording tools themselves changes during the run. Because the DDR devices
employed to gather the data use DC-coupled accelerometers, the recorded axial acceleration therefore

Figure 10—Location of data loggers in the field case examined, with AOT (lower drawing) and without AOT (upper drawing).
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Figure 4.15: Location of data loggers in the field case examined, with AOT
(lower drawing) and without AOT (upper drawing).

axial acceleration measured by the upper AOT to that measured by the lower

AOT, expressed in RMS, and corrected from biases in the data. The RMS

ratio can be expressed as

ZU/L =

(
AcorrectedRMS

)
UpperAOT(

AcorrectedRMS

)
LowerAOT

(4.20)

The recording tools were run after the well was landed in the target

formation in the lateral section. Since the DDR devices were upstring from the

bit, early in the run they are still located in the vertical portion of the well while

the bit is making hole in the lateral section. As drilling progresses the DDR

devices enter the build section first and later on the lateral. Therefore, the

inclination of the hole and thus the inclination of the recording tools themselves

changes during the run. Because the DDR devices employed to gather the

data use DC-coupled accelerometers, the recorded axial acceleration therefore

contains a component due to gravity that varies with inclination. That fact
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needs to be taken into account while analyzing the measured axial acceleration.

Before the attenuation of axial vibration can be calculated, the effect of gravity,

as well as any additional calibration offsets, must be removed. As seen in the

raw data, shown in Figure 4.16, a clear correlation between hole inclination and

average axial acceleration exists, as well as an offset in the data themselves.

The workflow utilized to find the corrected RMS axial acceleration is presented

in Figure 4.17.

contains a component due to gravity that varies with inclination. That fact needs to be taken into account
while analyzing the measured axial acceleration. Before the attenuation of axial vibration can be
calculated, the effect of gravity, as well as any additional calibration offsets, must be removed. As seen
in the raw data, shown in Figure 11, a clear correlation between hole inclination and average axial
acceleration exists, as well as an offset in the data themselves. The workflow utilized to find the corrected
RMS axial acceleration is presented in Figure 12.

The data were originally sampled as high frequency bursts of 400 Hz of 10 s duration, and then
continuously processed in the memory-based device to calculate the reduced data set stored in memory
while discarding the original high frequency data. The data set provided for analysis in this paper
contained RMS values, mean values, minimum and maximum values for the axial acceleration for each

Figure 11—Comparison between inclination depth profile and axial acceleration at the sensors location. Data showing both slide and
rotate drilling with no distinction.

Figure 12—Axial vibration attenuation assessment - data processing workflow.
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Figure 4.16: Comparison between inclination depth profile and axial accelera-
tion at the sensors location. Data showing both slide and rotate drilling with
no distinction.

The data were originally sampled as high frequency bursts of 400 Hz of

10 s duration, and then continuously processed in the memory-based device to

calculate the reduced data set stored in memory while discarding the original

high frequency data. The data set provided for analysis in this paper con-
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contains a component due to gravity that varies with inclination. That fact needs to be taken into account
while analyzing the measured axial acceleration. Before the attenuation of axial vibration can be
calculated, the effect of gravity, as well as any additional calibration offsets, must be removed. As seen
in the raw data, shown in Figure 11, a clear correlation between hole inclination and average axial
acceleration exists, as well as an offset in the data themselves. The workflow utilized to find the corrected
RMS axial acceleration is presented in Figure 12.

The data were originally sampled as high frequency bursts of 400 Hz of 10 s duration, and then
continuously processed in the memory-based device to calculate the reduced data set stored in memory
while discarding the original high frequency data. The data set provided for analysis in this paper
contained RMS values, mean values, minimum and maximum values for the axial acceleration for each

Figure 11—Comparison between inclination depth profile and axial acceleration at the sensors location. Data showing both slide and
rotate drilling with no distinction.

Figure 12—Axial vibration attenuation assessment - data processing workflow.
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Figure 4.17: Axial vibration attenuation assessment - data processing work-
flow.

tained RMS values, mean values, minimum and maximum values for the axial

acceleration for each of the two DDR devices. Due to the length of sampling

window (much longer than an oscillation cycle), the expected value for average

axial vibration should be directly correlated with hole inclination and gravity.

For a sensor in the vertical section, average accelerations should be near 1 g,

and 0 g for one in the lateral. A cursory glance at the raw data Figure 11

shows that each DDR can be characterized by an individual offset (mismatch

with the expected value) that needs to be quantified. For the purpose of this

analysis, the offset is assumed to be constant for the duration over which data

are sampled and analyzed by the DDR, and includes a contribution due to

gravity as well as a calibration offset. As true calibration bias is unknown, the
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bias is estimated here by assuming it corresponds fully to the departure of the

mean vibrations (corrected for gravity effects) from zero.

The corrected RMS axial vibration data are presented in Figure 4.18

and Figure 4.19 (corrected according to the scheme previously discussed) as a

function of Measured Depth (MD) for both cases, with and without AOT as

well as the attenuation between DDRs. All data presented here were collected

while the bit is on bottom and making hole, and while circulating. Red data

points indicate slide drilling while blue data points indicate drilling while ro-

tating. Axial vibrations are higher while rotating and lower while sliding due

to higher attenuation due to borehole friction. The primary reason attenua-

tions shown in Figure 4.18 are lower than those in Figure 4.19 is due to the

smaller distance between the two DDRs in the first BHA than in the second

BHA.

Comparing vibration levels with and without AOT, a small change (on

the order of 0.5 g) in RMS axial vibration is observed at 4400 feet, when

the AOT is first placed in the hole, with higher magnitude when the AOT is

present. Published results (Barton et al., 2009) also conclude that the AOT

doesn’t introduce significant vibration level (while still increasing performance)

even when a shock sub is used; note that the location where the data were

recorded is unknown making a direct comparison with the data presented here

difficult. It is interesting to compare these results with a rough theoretical

estimate. A typical AOT will oscillate with a displacement of 1/2 to 3/8

inch at an angular frequency , which is typically between 16 Hz and 20 Hz
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Figure 4.18: Corrected axial accelerations, at the upper DDR (left), the lower
DDR (center) and the attenuation between DDRs (right) for the BHA without
an AOT. Red points indicate slide drilling, blue points indicate drilling while
rotating.

(McCarthy et al., 2009). Assuming harmonic acceleration, the typical AOT

would generate a steady state axial acceleration amplitude on the order of 0.25
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Figure 4.19: Corrected axial accelerations, at the upper DDR (left), the lower
DDR (center) and the attenuation between DDRs (right) for the BHA with
an AOT. Acceleration magnitude is overall somewhat higher than that expe-
rienced in the BHA without an AOT. Red points indicate slide drilling, blue
points indicate drilling while rotating.
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g to 0.5 g. This increase in RMS axial vibration is indeed seen in the data –

at a MD around 4,400 m, when the BHAs are swapped, the RMS axial force

increases by 0.5g, from a range of 0.5g to 1g to 1g to 1.5g, as can be seen in

Figure 4.18 and Figure 4.19.

The field results in Figure 4.19 can be compared directly to the atten-

uation predicted by the model in Figure 4.20, where the attenuation due to a

range of damping coefficients is shown. The model most accurately predicts

the decreasing trend in attenuation seen in the field data between 0.3 and 0.5,

but does not capture the elevated axial accelerations due to drilling inputs,

as expected. Since these data sets are being collected in the lateral section,

the coefficient of friction used for Coulomb friction can be tuned to match the

result. Coulomb friction is inversely proportional to harmonic displacement,

so a displacement value of 0.5 inch yields an attenuation that is similar to the

0.3-0.5 level shown in the data.

Downhole sensors only record vibrations at a single point and cannot

provide insight into the dynamics of the entire drillstring. The model being

presented explicitly calculates the displacement and force at each simulation

node, chosen as a joint of drillstring, and can be visually presented to under-

stand the complete drillstring response. Presented in Figure 4.21 and 4.22 are

the responses of the drillstring at different bit depths for the field example just

described. Subfigures 4.21a through 4.22b show the evolution of the displace-

ment and force as the bit moves from the vertical 4.21a, through the build

(4.21b and 4.22a), into the lateral 4.22b. The wellbore geometry is presented
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Downhole sensors only record vibrations at a single point and cannot provide insight into the dynamics
of the entire drillstring. The model being presented explicitly calculates the displacement and force at each
simulation node, chosen as a joint of drillstring, and can be visually presented to understand the complete
drillstring response. Presented in Figure 16 are the responses of the drillstring at different bit depths for
the field example just described. Subfigures A through D show the evolution of the displacement and force
as the bit moves from the horizontal (A), through the build (B, C), into the lateral (D). A word of caution
when looking at the plots: displacement and force are presented as sinusoids, but do not represent lateral
motion of the drillstring. Instead, axial compression is represented as a negative displacement and axial
extension as positive displacement. The wellbore geometry is presented in the inset 3D figure, with the
location of the AOT highlighted in green and the drillstring in red. As discussed in the model formulation,
a jump discontinuity is present at the AOT in the force wave since a harmonic force input is assumed at
that node.

Figure 15—Attenuation predicted by the model with a range of frictional damping coefficients, ranging from low (red), as calculated by
Coloumb friction (blue) and high friction (violet).
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Figure 4.20: Attenuation predicted by the model with a range of frictional
damping coefficients, ranging from low (red), as calculated by Coulomb friction
(red) to high friction (violet). The blue, green, and yellow are in order of
increasing friction.

in the inset 3D figure, with the location of the AOT highlighted in green and

the drillstring in red. Displacement magnitude, in inches, is presented in the

first vertical plot, followed by force normalized to the exerted force at the

AOT, drillstring composition, with dimensions in inches, computed normal

force on each stand of drillpipe in pounds and wellbore inclination in degrees.

In agreement with intuition, attenuation of the vibration increases once

the AOT enters the lateral section due to the higher normal force which results

in higher Coulomb friction. This is apparent both above the AOT and below

the AOT due to the placement of the shock-absorber above the AOT, the
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magnitude of vibration is higher below the AOT than above for all segments

of the well. When it comes to understanding effects of AOT placement along

the string, the main advantage a model such as the one presented here over

scrutiny of measured data is that the same analysis can be conducted at the

design and planning stage by using simulations. Previous models have only

calculated effective friction coefficients; this model, on the contrary, can predict

attenuation through the drillstring and can be used to tune tool placement for

optimum effect (Newman et al., 2009). As shown in Figure 4.23, the location

of the AOT within the borehole has a dramatic effect on attenuation of the

vibration and poor placement of the AOT may severely limit its performance.

This step change, the movement from an effective friction coefficient to

the simulation of distributed drillstring response, will allow for highly tuned

BHAs in future wells that maximize the effect of the AOT based on the desired

well trajectory and formations lithology. This will improve drilling efficiency

and allow for the drilling of even longer laterals without the need for new or

larger equipment.
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(a) Predicted dynamic response with the AOT above the curve.
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(b) Predicted dynamic response with the AOT entering the curve.

Figure 4.21: Model predictions for the dynamic response of the drillstring in
the case of the AOT with DDRs for the AOT transiting the curve. Vibration
amplitude in the vertical section is high while being rapidly damped towards
the bit through the curve. Wellpath is shown in the inset plot in each, followed
by displacement magnitude in inches, normalized force magnitude, drillstring
dimensions in inches, normal force per stand in pounds and hole inclination.
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(b) Predicted dynamic response with the AOT midway through the lateral.

Figure 4.22: Model predictions for the dynamic response of the drillstring
in the case of the AOT with DDRs for the AOT in the horizontal section.
Vibration amplitude in the vertical lessens as the AOT moves further down
the horizontal as damping due to friction increases. Wellpath is shown in the
inset plot in each, followed by displacement magnitude in inches, normalized
force magnitude, drillstring dimensions in inches, normal force per stand in
pounds and hole inclination.
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4.9.2 Case Study 2: Horizontal well with an axial oscillation tool
and a continuous downhole dynamics recorder

A series of wells have been drilled with axial oscillation tools with con-

tinuous, low frequency, downhole dynamics recorders in the continental United

States. Each well is drilled with a bent downhole motor below an MWD-LWD

capable of recording 0.1 Hz axial and lateral acceleration data from a pair of

DC coupled accelerometers. 10 second averaged acceleration and peak value

during those 10 seconds are recorded and loaded from memory once the tool

returns to surface.

In one of these wellbores, placement was optimized using the transfer

matrix model already described. Based on the projected wellpath and bottom

hole assembly, a tool position of 2317 feet behind the bit was chosen. The

Percentage of Drillstring in Dynamic Friction (%)

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

Distance bit to agitator (ft)

1.6

1.65

1.7

1.75

1.8

1.85

B
it
 D

e
p
th

 (
ft
)

×10
4

50

55

60

65

70

75

80

85

90

95

100

P
e

rc
e

n
ta

g
e

 i
n

 D
y
n

a
m

ic
 F

ri
c
ti
o

n

Figure 4.23: Optimizing the location of the axial oscillation tool.
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(b) Predicted average axial acceleration due to the axial oscillator at
the location of the data recorder.

Figure 4.24: As the AOT transits the curve, acceleration magnitude at the bit
increases in both the field data as well as in the model prediction.

expected reduction in friction along the drillstring due to tool placement is

shown in Figure 4.23.

Once the well was drilled and an after action report prepared, an in-

teresting phenomenon was observed where axial vibrations began to increase

dramatically once the bit was approximately 2000 feet down the lateral section

and then peaked at 2300 feet. Upon investigation, it was realized that this was

the precise depth at which the axial oscillation tool was transiting the curve

of the well and then exiting into the lateral. The model predicts that axial
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vibrations will not travel far past the curve due to high normal forces, and

thus high frictional damping, along the curve. Comparing the predicted axial

vibrations with those recorded by the drilling dynamics recorder, a similarity

is observed.

4.10 Conclusions

The case studies presented herein have shown that the transfer matrix

model with equivalent viscous damping can predict drillstring response over

a broad range of frequencies. The model allows the oscillation source to be

placed at an arbitrary point in the drillstring for evaluation of axial oscillation

tools in drillstrings. The predicted phase response of force and displacement

at the bit correlates well with the likelihood of bounce and has demonstrated

that the use of downhole motors – by shifting frequency of excitation – and

the use and placement of shock absorbers reduce the incidence of bounce if

properly chosen. The dependence of the drillstring dynamic response on bit-

rock interaction and formation properties was verified, and by updating the bit

boundary condition to reflect formation boundaries, the model correctly pre-

dicted the excitation frequencies that resulted in drillstring resonance. High

frequency surface vibration data sets were also analyzed and the model also

predicted similar resonance peaks. It was also demonstrated that surface mea-

surements are highly influenced by drillstring resonance responses, while mea-

surements near the bit were dominated by the resonances of the BHA. Since

downhole measurement is limited to a small number of discrete measurement

107



points, the model’s ability to predict displacement and force throughout the

drillstring allows for tuning of BHA design and tool placement. The examples

presented included visualization of the effect of axial oscillation tools through-

out the entire drillstring at any measured depth as well as the response after a

shock absorbing tool was moved to a new location. Similarly, drillstrings can

be designed to avoid resonance due to excitation frequencies that have been

observed in offset wells, both axially and torsionally.

108



Chapter 5

Comparing Control Paradigms using a Control

Centric Model for Torsional Drillstring

Vibrations

The wave equation model previously described may be used to test the

effectiveness of control strategies to minimize higher order torsional oscilla-

tions. Until recently, the models used to both develop and test controllers

were simple single degree of freedom models which captured first order dy-

namics but were often neither able to capture the delay inherent in the system

nor the higher order modes. These controllers worked in many scenarios in the

field, but often failed once these higher modes began to appear – in long slen-

der drillstrings or in complicated well geometries. This chapter will study the

effectiveness of four different control schemes: a stiff PI controller, a tuned PI

controller, a second order PI controller and an impedance matching controller.

5.1 Introduction

The underlying goal of control system design is to match an output,

y, to a reference signal, r, while rejecting any disturbances to the system, d,

and reducing the effect of noise, n, in sensor readings. In the basic control
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system loop shown in figure 5.1, the frequency domain output Y (s) = L{y(t)}

is given by the expression

Y (s) = SsCsPs(Rs −Ns) + SsPsDs (5.1)

where the sensitivity S is given by

Ss =
1

1 + Cs(s)Ps(s)
(5.2)

and Cs(s) is the control system and Ps(s) is the plant, as shown in Figure

5.1. In the frequency domain, the reference signal is Rs(s) = L{r(t)}, the

disturbance is Ds(s) = L{d(t)}, and noise is Ns(s) = L{n(t)}.

Σ Cs(s) Σ

d

Ps(s) Σ

n

uc

Controller Plant

r e y

−

Figure 5.1: A basic feedback control loop, with r being the reference and y
being the output, u is the controller output, d is the disturbance and n is the
sensing noise. The frequency domain representations of the control system
and the plant are Cs(s) and Ps(s), respectively.

The controller has two inputs, the reference signal r and the measured

signal y, and one output signal, uc. This output signal is fed into the plant,

thus the role of the controller system is to generate an output which will cause

the measured signal to approach the reference signal with minimal oscillation

and maximum rapidity. The plant has three inputs, the controller output

uc, the disturbance d and external sensing noise n, and one output, y which
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is the measured system state. Both of these system, the controller and the

plant, may have additional inputs and outputs to monitor or modify internal

variables.

5.2 Common Control System Components

Both the controller and the plant may be assembled from a basic library

of components which will be briefly summarized here (Aström and Murray,

2010). All components are presented in the s-domain due to ease of represen-

tation and to facilitate the computation of the frequency response of a system.

5.2.1 PID Controller

A basic formulation of a controller is the proportional-integral-derivative

(PID) controller which has one input, e, the error, or difference between the

reference and the measured signals, and one output, u. This type of controller

may be described in one of two ways in the s-domain:

Cs(s) = Kp +
Ki

s
+Kds (5.3)

where Kp is the proportional coefficient, Ki is the integral coefficient and Kd

is the derivative coefficient. The second way, which is more convenient when

poles and zeros of the system are analyzed to determine stability, is

Cs(s) =
Ki +Kps+Kds

2

s
(5.4)

where the zeros of the system are given by

Zc =
−Kp ±

√
Kp − 4KdKi

2Kd

(5.5)
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and the pole of the system is at s = 0.

5.2.2 Filters and Delays

In the s-domain, filters and delays are compactly expressed as transfer

functions. First order low pass filters, which broadly allow low frequency

components of a signal to pass while filtering out high frequency noise, can be

expressed as

LP (s) =
1

1 +
2πfcutoff

s

(5.6)

where fcutoff is the cutoff frequency. High pass filters are the exact opposite

and thus allow high frequency components of a signal to pass while eliminating

low frequency components. These are often used to remove signal bias or a

constant offset, such as the force of gravity from an accelerometer. First order

high pass filters can be expressed as

HP (s) =
1

1 + s
2πfcutoff

(5.7)

where fcutoff is once again the cutoff frequency. Both low pass and high pass

filters act both on the amplitude of the signals upon which they are applied,

but also upon their phases. The same way a running average lags behind the

signal it is averaging, so does a filtered signal. Thus, a 100 ms low pass filter

will eliminate most noise within a 100 ms time window, it will also phase shift

the signal by 100 ms. This frequency domain representation is widely used

and has been shown to accurately model analog filters often used in the field

(Oppenheim and Schafer, 2009).
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Simple delays in signals which do not change the amplitude of the signal

can be expressed in the frequency domain as

De(s) = e−sτ (5.8)

where τ is the delay in seconds. These are often used to represent electronic or

signal processing delays, such as measurements from encoders or other sensors.

5.2.3 Representing Real Components

Real systems may be modeled using the three components detailed in

the previous section.

5.2.3.1 Variable frequency drives

The speed and torque of AC motors, such as those widely used in top

drives, are controlled using variable frequency drives. These drives modulate

the frequency and current of three phases of electrical current to accurately

control motor speed and torque. A thorough review of the types of VFDs and

their operation may be found on various manufacturer websites, but are well

summarized in two theses (Jadric, 1998; Ozkentli, 2012).

The simplest model to describe a VFD in a plant model is as a low pass

filter and a delay. All VFDs have a cutoff frequency above which commands

will be ignored, and may be simplified as a low pass filter. The electronics

within the VFD add an inherent pure delay into the system as well. Thus, a
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VFD may be modeled as

V FD(s) =
1

1 +
2πfcutoff

s

e−tvfds (5.9)

where fcutoff is the cutoff frequency of the VFD, or maximum change in signal

that the VFD may follow, and tvfd is the time delay of signal input to the

motor output.

5.2.3.2 AC Motors

AC motors often have large moments of inertias which cause torque to

decrease across a motor if it is accelerating. At steady state, the torque input

into a motor is the same as its output, but during acceleration or deceleration,

motor inertial torque must be considered (Gibbs, 1975). Thus, for systems

which accelerate or decelerate frequently, the following simplified motor model

may used

τinertia = Jtdφ̈ = sJtdφ̇ (5.10)

where Jtd is the top drive inertia and φ̇ is current rotary speed. This model

ignores frictional and steady state motor torque, thus torque values reported

by the model will be lower than expected. However, since this is a steady state

error, the dynamic behavior of the system will not be affected.

5.3 Methodology

To design high-order, high performance controllers, an improved plant

model, P (s), is needed to ensure proper stability criteria are met. However,
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this requires knowledge of physics of the plant, the drillstring in this case,

which is hard to quantify. Existing systems model the drillstring as a lumped

mass and torsional spring, as in the case of SoftTorque and SoftSpeed (Dwars

et al., 2013; Kyllingstad and Nessjøen, 2009, 2010), or as a transmission line

(Kreuzer and Steidl, 2010) and treat the wellbore geometry, bit rock inter-

action, and friction as disturbances to the system. Many of these can be

estimated, both during the drilling process or prior during the well planning

process, and their incorporation into the plant model would allow for improved

controller design.

The overall model is shown in Figure 5.2 and is comprised of a con-

troller block, a VFD block, a motor block, a drillstring model and an optional

observer. Prior work in this area has almost entirely left out the effects of

the VFD and motor on system performance by assuming a perfect system. In

reality, especially when control is attempted at frequencies higher than 1 Hz,

motor inertia and signal filtering become critical. At oscillation frequencies

over 2 Hz, VFD delays must also be accounted for.

The mathematical model of the drillstring is reviewed first, both in time

and frequency domains, and includes a discretized implementation as both the

damped wave equation and a mass-spring-damper system. The mass-spring-

damper simplified model is then be compared to a simple laboratory setup to

verify model mechanics. Further verification of model mechanics is performed

in the subsequent chapter where the model is used to image the drillstring.
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Figure 5.2: Control Diagram for a PID controller, VFD and top drive. Tpipe
is an output and ωpipe is the input of a drillstring model. An observer may be
inserted which may improve system performance.

5.3.1 Mathematical Model

Two drillstring models are systematically compared: a time domain

implementation of the wave equation and a frequency domain simplification

as a n-DOF mass-spring-damper model. The wave equation is solveable in

the time domain which allows for a time varying speed input from surface

and a non-linear friction boundary from the bit. This gives an opportunity

to investigate controller operation with a time varying speed setpoint. The

wave equation can be simplified as an n-DOF mass-spring-damper model with

the proper constants. This type of model is easily expressed in the frequency

domain and allows for rapid characterization of the control system to step,

unit and harmonic inputs.

The drillstring is modeled using the one dimensional damped wave

equation and incorporates complexities using boundary conditions and dis-
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tributed damping. As described by Lee (Lee, 1991), the primary sources of

damping are: viscous damping from the borehole fluid, material hysteresis,

radiation of energy into the formation, and frictional damping. All of these

except for friction can be considered constant along a drillstring. Friction

between the drillstring and wellbore is a function of borehole inclination, tor-

tuosity of the wellbore, the existence of ledges or other points of wellbore

contact, and the drillstring design, namely the placement of stabilizers.

The angular displacement of the drillstring, φ, may be described using

1

v2
t

∂2φ

∂t2
=
∂2φ

∂z2
− C(x, t)

GJ(x)

∂φ

∂t
(5.11)

where v2
t = G

ρ
is the wave velocity, C is the damping and J is the moment of

inertia. The general model consists of n beam elements, each described by the

wave equation, bounded by a surface impedance, representing the top drive,

and a bit boundary, representing bit-rock interaction.

mi−1 mi mi+1ki

ci

kj+1

ci+1

L RR L

Figure 5.3: Mass-spring-damper equivalent system.

This model may be simplified further, as shown in Figure 5.3, by ab-

stracting each mass element as a mass-spring-damper which obeys the follow-

ing equation

m
d2φ

dt2
= −kφ− cdφ

dt
(5.12)
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In this case, m is the moment of inertia of each element, k = GJ
L

is the torsional

spring constant, and c is the damping between elements.

For a n-DOF model, the motion of each mass may be described using

miφ̈i = −ki−1 (φi − φi−1)− φi (φi − φi+1)− ciφ̇i (5.13)

and the plant transfer function may be obtained, assuming a free bit end

condition and an ideal velocity source at the top drive.

For a seven lumped mass model presented here, the states are the angu-

lar displacements of the top drive and the seven lumped masses representing

the drillpipe and the bit, φ = [φ1, φ2, ..., φ8] with an ideal velocity source

φ̇1 = u. The system can be expressed as a series of seven second order dif-

ferential equations in the form M ¨̃φ + D ˙̃φ + Kφ̃ = k1e1φ1, where e1 ∈ R7 is

the standard basis vector, φ̃ = [φ2, φ3, ..., φ8] is the new state vector with the

angular displacements of seven lumped masses and the M, C and K matrices

are the inertia, damping and spring matrices defined as:

M =

 I1

. . .

I7

 C =

 c1

. . .

c7

 K =


k1 + k2 −k2

−k2 k2 + k3 −k3

. . .

−k7 k7


(5.14)

Applying the Laplace transform and rearranging gives the transfer func-

tion of the plant which will be used in the subsequent control section.

Φ̃(s) = (Ms2 + Cs+K)−1k1e1
1

s
U(s), Y (s) = e>7 Φ̃(s)s (5.15)
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G(s) =
Y (s)

U(s)
= k1e

>
7 (Ms2 + Cs+K)−1e1 (5.16)

This construct may be used in both the frequency domain, for con-

trol system design and system response, and in the time domain to analyze

transient behavior.

5.3.2 Bit Torque Model

A simplified bit model is used and utilizes a Stribeck friction curve

to model rock-bit interaction as a non-linear relation between bit speed and

torque. At zero speed, reactive bit torque is high, but then drops rapidly

once bit rotation begins before increasing linearly with rotational speed. This

model has been shown to give a good approximation of bit behavior without

needing to account for the complexities of cutter-rock interaction and is an

improvement over a Coulomb friction law (Reckmann et al., 2007; Navarro-

Lopez and Cortes, 2007). The Stribeck curve is approximated as

τbit =
a

|ωbit|
+ b · |ωbit|+ c (5.17)

for bit speeds greater than some ωcutoff , otherwise τbit →∞ as ωbit → 0.

The Stribeck curve used in the control simulations presented later in

this chapter is shown in Figure 5.4.
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Figure 5.4: Stribeck curve used for the control simulations.

5.3.3 Bit Boundary Condition

The bit boundary condition in the drillstring model is modeled as a

rotating inertial mass which obeys the following force balance:

τBHA = JBHAφ̈+ τbit (5.18)

where τBHA is the torque exerted on the BHA by the drillstring, τbit is the

reactive bit torque as computed by the Stribeck friction law, JBHA is the BHA

inertia, and φ̈ is the acceleration of the BHA. Solving for angular velocity, φ̇
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of the BHA gives

JBHAφ̈ = τBHA − τbit (5.19)

φ̈ =
τBHA − τbit
JBHA

(5.20)

and then applying a centered finite difference approximation, the angular po-

sition of the bit may be found

φt+1
bit − 2φtbit + φt−1

bit

∆t2
=
τBHA − τbit
JBHA

(5.21)

φt+1
bit =

τBHA − τbit
JBHA

∆t2 + 2φtbit − φt−1
bit (5.22)

5.4 Experimental Setup

Many laboratory models described in literature (Leine et al., 2002;

Kreuzer and Steidl, 2010; Liao et al., 2012) are single degree of freedom models

that model the BHA as a single large inertial mass (typically a disk) and the

drillstring as a torsional spring (typically a long slender rod). These models

are effective at modeling first order dynamics, but do not take complexities of

complex drillstring designs or non-vertical wellbores into account. A seven de-

gree of freedom model is constructed as a proof of concept for a much larger 30

degree of freedom model designed and built by another student in the research

group which emulates a 2km drillstring and is detailed in other papers. These

models are based upon a model designed by Shell Research (Dwars, 2015) that

distributes the inertial masses along the drillstring, but expands on its capa-

bilities by allowing for distributed damping to emulate borehole contact. n
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inertial masses, the size of which can be varied to match different sections of

a BHA, are fixed to a steel rod that acts as a torsional spring between each of

the masses. Torsional waves can then be generated, either at the top drive or

at the bit and wave propagation can be observed and recorded at each inertial

mass.

This chapter details a seven-DOF benchtop prototype of the laboratory

model that is able to simulate a 320 meter (950 ft) drillstring by using a series

of 2.54 cm diameter inertial masses attached to a rubber rod. The masses act

to delay a torsional wave that would otherwise travel at 25 m/s down to an

effective velocity of 3.3 m/s. Measurement of angular displacement at four

points is achieved using rotating stripped disks and photo sensors, giving an

estimate of angular velocity.

The seven degree of freedom mass-spring-damper model described in

the previous section is next compared with the velocity distributions generated

by the benchtop model to ensure model fidelity.

5.5 Model Analysis

A sinusoidal input is placed at bit boundary in the desktop model and

velocities are computed from the reflectance values of the photo sensors. The

initial wave propagation may be used to compute propagation delay and once

the sinusoidal input ceases, the decay of the oscillations may give a damping

factor. Of note, the simple encoder discs do not allow for differentiation be-

tween forward and reverse motion, so only the absolute value of velocity may

122



Figure 5.5: The desktop prototype model showing the full model, sensing
and data acquisition (right) and the stripped disks and photo sensors used as
rudimentary encoders (left).

be computed from the transit time of a light or dark stripe. Lateral motion

is not accounted for in the model physics, but does not affect angular velocity

measurements since sensor radial position does not affect the angular width of

a stripe.

The analytic derivation of the spring constants and mass inertial el-

ements from material constants gives a close approximation of the physical

behavior, and as expected, the damping constants, which are constant within

the model, require some tuning to match the decay of the observed wave be-
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Figure 5.6: Model output (top) and model results (bottom).

havior. Consistent behavior of the model, either after a unit cycle or a repeated

oscillation cycle indicates that damping may be estimated from the behavior

of the top node within a true drillstring. A series of controller were demon-

strated using this seven lumped mass mathematical model and show that loop

shaping methods may be used to successfully damp out oscillations from a

step response (Shor et al., 2015b).

5.6 Comparing Controllers

The performance of a series of controllers will be compared in this

section with the drillstring configuration shown in Table 5.1 and the rig and

control system parameters shown in Table 5.2. These values are representative
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of a small top drive, such as those built by NOV and Canrig and a typical

digital VFD setup, as manufactured by Siemens or ABB.

Component
Length

(ft)
OD
(in)

ID
(in)

Damping
(η)

Drill Pipe 4000 5 4.5 0.01
Heavy Weight

Drill Pipe 800 6 4.5 0.02
Drill Collar 200 8 2 0.1

Table 5.1: Drillstring components used in the controller comparison cases

Parameter Value Unit

Top Drive Motor Inertia 1200 N.m
PI Controller Delay 0 ms
VFD Cutoff Frequency 200 Hz
VFD Delay 0 ms
VFD Torque Limiter 40000 N.m
Encoder Low Pass Filter 4 ms
Additional Speed Low Pass Filter 0 ms
Sensor Delay 2 ms

Table 5.2: VFD and motor parameters for the control scenarios

Bit-rock interaction is accomplished using the stribeck curve to simulate

static and dynamic torque behavior with the parameters shown in Table 5.3.

Parameter Value Unit

a 100 (N ·m)(s−1)
b 30 (N ·m)(s)
c 4000 N ·m)

Table 5.3: Stribeck parameters used for the bit-rock friction model: τbit =
a
|ωbit|

+ b · |ωbit|+ c
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5.6.1 Stiff PID Controller

The simplest control methodology for a top drive is a control paradigm

typically known as a stiff speed controller, where torque is modulated to ensure

constant rotary speed. This is the simplest controller to implement and is

the most convivial to the driller – the top drive spins at exactly the speed

commanded. However, this creates a stiff boundary condition at the surface

and allows standing waves to develop – exhibited as stick-slip behavior. The

control system is shown in Figure 5.7.

Two stiff PI controllers are shown in Figures 5.8 and 5.9 for two scenar-

ios – the bit off bottom and the bit on bottom – which exhibit large torsional

oscillations at the bit while surface rotary speed remains constant.

In the off-bottom case, shown in Figure 5.8, the bit is treated as a

free boundary condition which allows for both positive and negative torque

to experienced at the BHA as the bit fluctuates from 0 to 120 rpm while the

Kp+Kis

s

Controller

1
1+ s

2πfcutoff

e−tvfds

VFD

1
jtds

Top Drive

1
1+ s

2πfsp

Speed Filter

ωset + ωerr Tcom Tact +

Tpipe−

Tmotor

ωpipe

−

Figure 5.7: Control Diagram for a PID controller, VFD and top drive. Tpipe is
the output of the drillstring model and ωpipe is the input of a drillstring model.
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surface is maintained at 60 rpm. This type of behavior has been observed in

many cases in the field when the drillpipe is first rotated after a connection.

(a) Kp = 38000 and Ki = 100000. (b) Kp = 3800 and Ki = 10000.

Figure 5.8: Step response of the system with a stiff PI Controller and the bit
off bottom.
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With the bit on bottom and obeying the Stribeck curve, shown in Fig-

ure 5.9, the bit boundary becomes a nonlinear torque boundary. Momentary

sticking is observed – seen as zero bit rotation – as well as peak bit rpms of

120, similar to the bit off bottom case. The second mode of stick slip, the

embedded higher frequency oscillation in the rpm and torque, is also clearly

visible. Of note is the change in stick slip frequency, shifting from a higher

frequency when the bit is free to a lower frequency when the bit is on bottom.

(a) Kp = 38000 and Ki = 100000. (b) Kp = 3800 and Ki = 10000.

Figure 5.9: Step response of the system with a stiff PI Controller and the bit
on bottom.
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5.6.2 Tuned PI Controllers

The PI controller may be tuned to have a zero at the frequency of

the first mode of stick slip, which is roughly equal to one over the one way

travel time of a wave from the surface to the bit, but can also be computed

analytically – as shown in a later section. For a 5000 ft drillstring, this is 1.56

seconds or 0.64 Hz. By placing a zero at this frequency, waves traveling from

the bit to the surface at this frequency are ignored and not allowed to develop

into standing waves. For a free boundary condition, this methodology quickly

attenuates any standing waves, as shown in Figure 5.10.

(a) Kp = 1350 and Ki = 2107.6875. (b) Kp = 850 and Ki = 1327.0625.

Figure 5.10: Step response of the system with a tuned PI Controller and the
bit off bottom.
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With the bit on bottom, as shown in Figure 5.11, it becomes apparent

that the tuned PI controller only attenuates the first mode of stick slip as the

second order continues without any attenuation in amplitude. Also since the

frequency of stick-slip has shifted, the tuned PI controller which was effective

for a free bit is much less effective.

(a) Kp = 1350 and Ki = 2107.6875. (b) Kp = 850 and Ki = 1327.0625.

Figure 5.11: Step response of the system with a tuned PI Controller and the
bit on bottom.
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Changing the tuning frequency to one closer to the frequency exhibited

by the bit on bottom, the bit oscillations decay quicker, as shown in Figure

5.12. Oscillations also damp faster in the case with the smaller Kp value acts

as a ‘softer’ system and thus reduces the amount of twist in the drillstring

faster.

(a) Kp = 1350 and Ki = 1686.15. (b) Kp = 850 and Ki = 1061.65.

Figure 5.12: Step response of the system with a modified tuned PI Controller
and the bit on bottom.
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5.6.3 Second Order PI Controllers

A second order PI controller may be designed to extend the function-

ality of the first order PI controllers in the previous section. In the case, the

Cs block is replaced with

Cs = cf ·
a1s+ a2

s
· b1s+ b2

s
(5.23)

and performance is significantly improved, as shown in Figure 5.13

(a) Tuned first order PI controller
with KI = 850 and Ki = 1061.65.

(b) Tuned second order PI controller
with cf = 100, a1 = 4, a2 = 0.1, b1 =
3 and b2 = 1.

Figure 5.13: Step response of the system with a tuned first order and second
order PI controller.
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5.6.4 Impedance Matching Controllers

A new method has recently been proposed which describes the surface of

a drillstring as a reflective boundary which allows standing waves to develop.

By changing the reflectivity of this boundary, less energy is stored in the

drillstring and standing waves are disrupted. The approach is described at

length in literature but a summary is presented here (Dwars, 2015).

A concept familiar to those who work with seismic data, radar, sonar

or non-destructive testing is acoustic impedance. A wave, be it acoustic or

electromagnetic, travels through a medium until a change in material prop-

erties is encountered – density, viscosity, stiffness, inertia, etc – and is then

partially transmitted and partially reflected. The ratio between transmission

and reflection is given by ratio in impedance contrast across the boundary.

Impedance, the ratio between the change in either displacement or velocity

and change in force, is a material property that gives the amount of effort

necessary to place the medium in motion. For a rotating pipe, this is simply

the ratio of rotational velocity to torque and is computed directly from the

wave equation:

Z =
∆ω

∆τ
=

∂ω
∂t

∂τ
∂z =

∂ω

∂τ
· ∂z
∂t

= ρJp · c = Jp
√
ρG (5.24)

The top drive may attempt to match the impedance of the drillpipe

connected to it by modulating its rotational velocity given the amount of

torque transmitted from the drill pipe. During perfect impedance matching,

100% of wave energy from the bit is transmitted across the top drive and none
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is reflected. At 50% matching, half the energy is transmitted and half reflected.

In reality, this is only true for a band of frequencies. At lower frequencies, this

behavior is undesirable since the driller setpoint must be observed. At high

frequencies, this ambition is impossible due to signal filtering and delays.

Impedance matching is accomplished through the addition of an ob-

server consisting of a high pass filter, a low pass filter and an impedance gain,

as shown in Figure 5.14. The controller must eventually match the set point,

so only higher frequency noise from the bit is used to impedance match, thus

a high pass filter is used with a slow time constant (on the order of seconds).

Noise within the torque signal itself must be filtered, otherwise the top drive

will be unable to match the signal, thus a low pass filter is also used. This

filtered torque signal is then converted into an rpm setpoint by multiplying it

by the target impedance and then applying the percent matching desired.
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Figure 5.14: Control Diagram for an Impedance Matching PI controller, VFD
and top drive. Tpipe is the output of the drillstring model and ωpipe is the input
of a drillstring model.
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With 50% or 100% impedance matching, stick-slip oscillations atten-

uate almost immediately, however, high frequency noise becomes visible due

to the delays inherent in the system from sensing, filtering and control delay,

as shown in Figure 5.15. In a later section, the source of this noise will be

quantified, however, due to the design of the system, it is particularly difficult

to eliminate without eliminating most filter and delays, which is sometimes

not possible due to the nature of the hardware.

(a) 50% impedance matching. (b) 100% impedance matching.

Figure 5.15: Step response of the system with a stiff PI controller and 50%
and 100% impedance matching with the bit off bottom.
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By lowering the impedance matching target, attenuation takes longer,

but has the benefit of removing much of the high frequency behavior. Even

a 25% impedance matching controller outperforms a tuned PI controller, as

shown in Figure 5.16.

(a) 10% impedance matching. (b) 25% impedance matching.

Figure 5.16: Step response of the system with a stiff PI controller and 10%
and 25% impedance matching with the bit off bottom.
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Since an impedance matching controller is not tuned to a specific fre-

quency, and is rather matched to the impedance of a connected drillpipe,

performance remains robust with the bit on bottom. In this case, some of

the high frequency noise is removed from the system due to energy being dis-

sipated at the bit boundary, however low steady state noise remains in the

torque signal, as shown in Figure 5.17.

(a) 50% impedance matching. (b) 100% impedance matching.

Figure 5.17: Step response of the system with a stiff PI controller and 50%
and 100% impedance matching and the bit on bottom.
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On bottom, the 10% impedance matching controller outperforms the

tuned PI controller and only is outperformed by the second order PI controller.

Increasing matching to 25% eliminates this advantage, as shown in Figure 5.18.

High frequency noise is no longer visible and thus presents a robust system

which is able to mitigate stick-slip yet not inject high frequency noise. A

quantification of this noise will be presented in a later section.

(a) 10% impedance matching. (b) 25% impedance matching.

Figure 5.18: Step response of the system with a stiff PI controller and 10%
and 25% impedance matching and the bit on bottom.
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5.6.5 Comparing Controllers

Broadening the simulation to 120 seconds of drilling time, the effective-

ness of these four control methods can be directly compared.

A stiff PI Controller, shown in Figure 5.19, gives clear stick slip while

maintaining a constant surface RPM. The continued stick cycle verifies model

behavior and presents a torque curve that looks similar to those experienced

in the field.

Figure 5.19: Stiff PI Controller with a Kp = 38000 and a Ki = 100000 showing
clear stick slip.
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A tuned PI Controller, shown in Figure 5.20, mitigates stick slip over

90 seconds by absorbing energy at the tuned frequency by modulating the top

drive rpm at a set frequency (shown in light blue).

Figure 5.20: Tuned PI Controller with a Kp = 850 and a Ki = 1061.65 showing
stick slip mitigation.
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A second order tuned PI Controller, shown in Figure 5.21, mitigates

stick slip over 40 seconds. The first mode is damped after three cycles, but the

higher order mode is still visible for many more cycles – the tuned controller

is only tuned to a single frequency.

Figure 5.21: Tuned PI Controller with a cf = 100 showing stick slip mitigation.
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Performance of a first order PI can be matched with just 10% impedance

matching at the surface controller, as shown in Figure 5.22. The second order

PI controller can be matched with a 25% impedance matching controller, as

shown previously.

Figure 5.22: Impedance matching with 10% matching and a stiff PI Controller
with a Kp = 38000 and a Ki = 100000 showing equivalent stick slip mitigation
to a tuned PI Controller.
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Performance can be greatly improved with just 50% impedance match-

ing at the surface controller, as shown in Figure 5.23. Higher frequency noise

injection in to the Tvfd signal is minimal and attenuates over time.

Figure 5.23: Impedance matching with 60% matching and a stiff PI Controller
with a Kp = 38000 and a Ki = 100000 showing improved stick slip mitigation
to a tuned PI Controller.
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Performance can be improved further with 100% impedance matching

at the surface controller, however, noise injection remains and does not atten-

uate with time, as shown in Figure 5.24. The source of this noise is shown in

the next section.

Figure 5.24: Impedance matching with 100% matching and a stiff PI Controller
with a Kp = 38000 and a Ki = 100000 showing improved stick slip mitigation
to a tuned PI Controller.
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5.7 System Functionality

5.7.1 Top Drive Controller Impedance

The theory behind impedance matching may be applied to quantify the

effectiveness of any top drive control system. The ability of the top drive to

absorb and not reflect energy from the bit may be computed through the s-

domain analysis of the control system components to give a system impedance

as a function of frequency. By decoupling the drillstring model from the top

drive and controller, the top drive impedance may be computed as the ratio

of pipe speed, ωpipe, to pipe torque, τpipe.

Using the simplified control system schematic in Figure 5.25, the trans-

fer function for the system may be assembled:

ωpipe =
1

Bs

(−Tpipe − AsDsCsωpipe) (5.25)

As Ds

1/Bs

Cs

ωset + ωerr Tcom Tact +

Tpipe−

Tmotor

ωpipe

−

Figure 5.25: Control Diagram for a PID controller, VFD and top drive. Tpipe
is the output of the drillstring model and ωpipe is the input of a drillstring
model.
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Rearranging the equation and multiplying through by Bs

ωpipe

(
1 +

DsAsCs
Bs

)
= −Tpipe

Bs

(5.26)

ωpipe (Bs +DsAsCs) = −Tpipe (5.27)

The impedance of the top drive, Ztd is simply the ratio of speed over torque:

Ztd =
ωpipe
Tpipe

= − 1

Bs +DsAsCs
(5.28)

and the top drive reflectivity, given the impedance of the connected drill pipe

is z0, is

R =

∣∣∣∣Ztd + z0

Ztd − z0

∣∣∣∣2 (5.29)

The sensitivity of the system is given by

Ss = −Bs · Ztd =
1

1 + DsAsCs
Bs

(5.30)

or is simply a function of the open loop gain:

OLG =
DsAsCs
Bs

(5.31)

In the case of the impedance matching controller, shown in Figure 5.26,

a similar method may be used.

The transfer function of the system may be assembled as

ωpipe =
1

Bs

(−Tpipe + AsDs (−z0HsLsTpipe − Csωpipe)) (5.32)

= −DsAs(z0HL)

B
Tpipe

− DsAsCs
Bs

ωpipe −
Tpipe
Bs

(5.33)

147



As Ds

1/Bs

Cs

z0 Hs Ls

ωset + ωerr Tcom Tact +

Tpipe−

Tmotor
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−

−

Figure 5.26: Control Diagram for an Impedance Matching PI controller, VFD
and top drive. Tpipe is the output of the drillstring model and ωpipe is the input
of a drillstring model.

Rearranging the equation and multiplying through by Bs

ωpipe

(
1 +

DsAsCs
Bs

)
= Tpipe

(
−DsAs(z0HsLs)

Bs

− 1

Bs

)
(5.34)

ωpipe (Bs +DsAsCs) = Tpipe (−DsAs(z0HsLs)− 1) (5.35)

The top drive impedance, Ztd is the ratio of speed over torque, which gives:

Ztd =
ωpipe
Tpipe

= −1 +DsAs(z0HsLs)

Bs +DsAsCs
(5.36)

and system sensitivity is once again a function of the top drive impedance:

SStd = −Bs · Ztd =
1 +DsAs(z0HsLs)

1 + DsAsCs
Bs

(5.37)

The reflectivity and sensitivity of each of the top drive controller may then

be plotted for the frequency range f desired, where the Laplace variable s is

given by

s = 2πif (5.38)
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5.7.2 Drillstring Dynamic Response

The frequency response of the drillstring may be computed using the

same transfer matrices as were used in Chapter 4, but with the appropriate

constants for torsional rather than axial vibration. The transfer matrix, Ai,(
φ
τ

)
n

=

(
cosh γL sinh γL

iωZ0

iωZ0 sinh γL cosh γL

)(
φ
τ

)
n−1

(5.39)

where

γ =

√
iω

G

(
iωρ+

C

Ip

)
(5.40)

Z0 = Ip

√
G

iω

(
iωρ+

C

Ip

)
(5.41)

with shear modulus G, polar moment of inertia Ip, density, ρ, and damping C,

can be computed for each element within the drillstring and then combined

into a drillstring transfer function, A,(
φ
τ

)
surface

=
n∏
1

Ai

(
φ
τ

)
bit

(5.42)

= A

(
φ
τ

)
bit

(5.43)

The response of φsurface and τsurface are known at the top drive over the s-

domain given a particular controller design, thus the behavior of the drillstring

at the bit can be computed

φbit = A11φsurface −A12τsurface (5.44)

τbit = −A21φsurface + A22τsurface (5.45)
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and the impedance of the drillstring is given by

Zds =
φbit
τbit

(5.46)

=
A11φsurface −A12τsurface
−A21φsurface + A22τsurface

(5.47)

=
A11

φsurface
τsurface

−A12

−A21
φsurface
τsurface

+ A22

(5.48)

=
A11Ztd −A12

−A21Ztd + A22

(5.49)

Plotting the magnitude of Zds against frequency gives the drillstring

mobility where structural modes appear as peaks. In the following series of

plots, Figures 5.27 to 5.30, the evolution of these structure modes is shown for

four different wellbore geometries at four different bit depths.

1. 4000 m vertical section to a 400 m build section to a horizontal lateral

2. 2000 m vertical section to a 400 m build section to a horizontal lateral

3. 2000 m vertical section to a 400 m build section to horizontal, then at

3000 m drop over 200 m to 45o tangent

4. 2000 m vertical section to a 400 m build section to horizontal, then at

3000 m drop over 400 m back to vertical

In the following figures, Figures 5.27 through 5.30, the wellpath, plotted

as horizontal displacement vs true vertical depth, is shown in the left subplot.

In the right subplots, drillstring impedance, Zds, or drillstring mobility, is
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plotted as a function of frequency. In the lower right subplot, the y axis is

plotted on a linear scale, while the upper right subplot plots the y-axis on a

log scale. This is done to show the prominence of the peaks while also showing

the frequency response of the drillstring.

At a bit depth of 2000 meters, all four wellpaths coincide, as shown in

Figure 5.27. The first structural mode is dominant and the higher modes are

20 times lesser. In this case, stick slip is primarily first mode and this is a case

where a tuned PI controller may function effectively.
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Figure 5.27: With the bit at 2000 meters, the wellpaths for the four wells are
identical and the first mode is pronounced.
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At a bit depth of 3000 meters, the four wellpaths have split into two

groups, one group continuing vertically, the other landing into a lateral, as

shown in Figure 5.28. The vertical wells continue to have a dominant first

mode. The horizontal wellpaths have higher modes that are equal to or greater

than the first mode, so these cases, higher order stick slip may expected with

frequencies around 1-5 Hz, but peak magnitude is significantly reduced. In

this case, the tuned PI controller will still function effectively in the vertical

well, but will face difficulty, should stick-slip arise in the horizontal well, since

higher modes are significant.
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Figure 5.28: With the bit at 3000 meters, the wellpaths for the four wells have
split into two groups – a horizontal well and a vertical well – and the first
mode remains pronounced, especially in the vertical well.
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At a bit depth of 4000 meters, all four example wellpaths have diverged,

as shown in Figure 5.29. The vertical wellpath continues to have a dominant

first mode, but the second mode is becoming significant. A tuned PI controller

will no longer be as effective, since the first and second modes are of similar

magnitude. In the horizontal well, the first several modes are of equal magni-

tude, while in the well which drops back to vertical, the first mode as well as

the second, fourth and fifth modes are significant.
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Figure 5.29: With the bit at 4000 meters, the first mode remains dominant
for the vertical well. For the S-shaped well dropping to vertical, the first
mode is dominant but higher order modes are of comparable magnitude. In
the horizontal and S-shaped well dropping to a tangent, the first mode is
significantly reduced.
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At a bit depth of 5000 meters, the first mode of the well dropping back

to horizontal is significant, along with several modes between 2 and 3 Hz, as

shown in Figure 5.30.
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Figure 5.30: With the bit at 5000 meters, the first mode is significant for the
S-shaped well dropping to vertical. In the deep horizontal well, the first mode
is entirely damped out, but the second mode becomes dominant. In the other
two case, all modes are reduced.
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5.7.2.1 Evolution with Measured Depth

As can be seen in the previous section, there is an evolution in frequency

of the structural modes as the drillstring length increases – as bit depth in-

creases. This can be be visualized directly in the form of a spectrogram, which

in this case, is easily assembled by stacking a series of drillstring mobilities at

a sequence of depths. With the same drillstring used for each wellpath, the

frequency evolution remains similar, however the magnitude of the resulting

modes changes.

For a vertical well, shown in Figure 5.31, the first mode occurs at a

lower frequency as depth increases and remains the most significant. The
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Figure 5.31: For a vertical wellbore, the evolution of the first mode of stick-slip
is apparent and higher modes are nondominant.
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second mode also shifts to a lower frequency with increasing depth and also

increases in magnitude with depth, thus it can be expected that both the first

and second modes of stick slip appear in vertical wells over 4000 meters while

primarily the first mode will appear in wells less than 4000 meters with this

drillstring.

For a shallow horizontal well, as shown in Figure 5.32, the first struc-

tural mode is significant through the vertical section and into the first part

of the lateral before being damped out significantly. The second mode then

becomes of the same magnitude as the first mode through the length of the

lateral and may give rise to higher frequency stick slip.
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Figure 5.32: For a shallow horizontal well, the first mode of stick-slip is rapidly
damped once in the lateral, and the second mode becomes the dominant mode.
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In a deeper horizontal well, as shown in Figure 5.33, the first structural

mode is significant once again throughout the vertical before being completely

damped out in the horizontal. The second mode is also well damped.
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Figure 5.33: For a deeper horizontal well, the first mode of stick-slip is damped
in the horizontal section, and higher order modes do not become dominant.
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In the well dropping to a 45o tangent, as shown in Figure 5.34, the first

mode remains significant in the vertical section of the well, is damped slightly

in the horizontal and then remains present throughout the tangent section due

to continued friction with the wellbore wall.
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Figure 5.34: For a shallow S-shaped well dropping to a 45o tangent, the first
mode becomes reduced while the second and third modes become significant.
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In the well dropping back to vertical after a short horizontal section,

as shown in Figure 5.35, the first mode briefly diminishes in the horizontal

section before coming back with a vengeance in the second vertical section.

This type of wellpath is expected to generate significant stick slip, which has

been observed in the field in wells with slender drillstrings and intermediate

horizontal or tangent sections.
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Figure 5.35: For an S-shaped well dropping back to vertical, the first mode
becomes broad and remains dominant.
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5.7.3 Controller Assessment

Understanding the structural modes of the drillstring within the well-

bore in question allows the effectiveness of the various control strategies to

be fully understood. Tuned controllers must be retuned for each depth to

ensure the target frequency is that of the first structural mode, but these

controllers fall victim to higher order modes once they appear. Untuned con-

trollers maintain their performance throughout the life of the well and thus

increase in effectiveness as the bit gets deeper and the frequency of structural

modes lessens. This effectiveness is explored visually in the following two

sections.

5.7.3.1 PI Controllers

PI controllers are either designed to reject all disturbance – or be stiff –

and return the system to the setpoint, or can be tuned to a specific frequency.

This behavior is clearly shown in the reflectivity plots. Based on the values

chosen for KI and Kp, the control system dampens a specific range of frequen-

cies. Thus, a PI controller may be tuned to dampen the first structural mode

and eliminate first order stick slip, but since the second mode lies outside the

tuned band, higher order modes continue undamped, as shown in Figure 5.36.

The top drive sensitivity is another measure that characterizes the con-

troller behavior. At low frequencies, sensitivity is low before approaching 1 at

the tuned frequency. When sensitivity is low, the reaction of the top drive to

a disturbance from the drillstring – a change in pipe torque – is small. When
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sensitivity is 1, there is a reaction of equal magnitude from the top drive as

the disturbance from the drillpipe. In the case of the second order PI con-

troller, sensitivity is greater than 1 at the targeted frequency since controller

aggression is higher. If sensitivity is greater than 2, problems may arise from

controller activity.
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Figure 5.36: Top drive reflectivity and sensitivity of the PI controllers shown
in this section.
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5.7.3.2 Impedance Matching Controller

Impedance matching controllers have a much wider bandwidth of fre-

quencies where top drive reflectance is less that one, however, this broader

functionality comes at the cost of a much higher system sensitivity in the

frequency band of interest as well as reflectivities higher than one at higher

frequencies, as shown in Figure 5.37.
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Figure 5.37: Top drive reflectivity and sensitivity of the impedance matching
controllers shown in this section.

The high frequency noise which appears in the torque signal of the

impedance matching simulations is a direct product of the high sensitivity
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and reflectivity higher than one. As it was shown in the time domain plots,

the 10% and 25% matching systems injected little or no high frequency noise

into the Tvfd signals, which comes from their respective reflectivities remaining

near 1 above a frequency of 0.5 Hz and their sensitivities remaining below 2.

In the case of 50% matching, high frequency noise is seen since the reflectivity

of the system has a maximum of 1.2 at 1 Hz, the frequency at which the noise

is seen. It attenuates over time since the damping within the drillstring is

greater than the injection of energy at the top drive. This is not true for the

100% damping case with its peak of 1.45 at 1 Hz.

5.8 Conclusion

The chapter presented the framework necessary to evaluate the perfor-

mance of stick-slip mitigation controllers, both in the time domain to visualize

performance, and in the frequency domain, to evaluate controller bandwidth.

Previous work did not consider the delays inherent in the drillstring system,

did not model higher structural modes or did not take into account wellbore

trajectory. By combining an understanding of the reflectivity of the top drive

due to control system operation with the dynamics of the drillstring, it is pos-

sible to first evaluate and then improve the function of installed or proposed

control systems.
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5.9 Further Work

The effectiveness of proposed or deployed stick-slip mitigation systems

can be thoroughly assessed, both the time and frequency domains in varied

wellbores using the methods presented in this chapter. This presents the

possibility of

• tuning a control system to mitigate the expected drillstring modes based

on a proposed wellpath, which may be different from a vertical wellpath.

• comparing different installed controllers on a drilling rig to choose the

one best suited to the current wellpath and drillstring.

• quantifying the behavior of a newly proposed system and evaluating

designer claims by comparing the performance envelope with existing

and idealized control systems.
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Chapter 6

A Feasibility Study in Drillstring Imaging

6.1 Introduction

Borehole surveys present a sparse view of borehole geometry that give

an indication of tortuosity and borehole quality, but cannot give an detailed

view of contact points along a borehole. In areas of low dogleg severity (DLS),

these points represent areas of increased friction, leading to a reduction of

torque and weight on bit transfer. In areas of high DLS, especially if the

radius of curvature is small, these points present regions of the wellbore prone

to problems, including increased chances of hang ups of both drillpipe and

casing. To avoid placing additional equipment in the drillstring, there is a

desire to implement solutions from the surface that have the capability to

image these contacts using torsional signals sent from surface.

This chapter begins with a literature review of methods used in a

variety of industries to conduct imaging of features using various types of

waves, including the use of pressure or acoustic waves for seismic imaging, non-

destructive testing and sonar. Algorithms used within the radar and medical

communities are also reviewed, specifically for the benefits of signal filtering
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and feature detection. Detection limits, feature contrast and signal to noise

ratios are also presented as they pertain to imaging and feature detection.

Three broad groups of methods are investigated: a direct mapping of

time to space, estimation of the system transfer function, and model based

inversion. The first method allows for the characterization of reflections in the

space axis without the need for a priori knowledge of the system through the

use of signal processing techniques of wave reflections. The second attempts to

estimate the transfer function of the system and then applies a band limited

impulse to estimate the impulse response. The third generates a best fit model

of the data by fitting the response to a model based on the wave equation.

The advantages and disadvantages of each are discussed while being applied

to three setups: transverse and axial waves in a hanging steel beam, torsional

waves in a laboratory simulation, and drilling operations on a land based

drilling rig.

Direct mapping from time to space is shown to be effective in the simple

system of a simple hanging steel beam. Dispersion compensation of flexural

waves presents the clearest image due to varied wave velocities of flexural waves

presenting the widest bandwidth input. Axial waves in the beam also show

a clear image, but are limited by the spatial resolution limit imposed by the

Nyquist criteria and by the input bandwidth. System transfer function esti-

mation shows promise, especially when applied to datasets with injected white

noise. Model inversion is shown to produce accurate data fits and plausible
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impedance maps, but is only as good as the models being fitted, and requires

a priori knowledge of boundary conditions and system properties.

6.2 Literature Review

Reflections of pressure, acoustic or electromagnetic waves are used in

many applications to image the internal structure of objects and materials.

These applications range from seismic imaging of subsurface geologic features

to nondestructive testing of structures, buildings or machinery. Other applica-

tions include ultrasound medical imaging of internal organs and sonic imaging,

both through air using ultrasonics or underwater. All these applications carry

a vast literature of methods and best practices to improve signal quality and

feature detection. A broad overview will be presented in this literature re-

view but several methods will be highlighted and then applied in the following

sections.

One class of methods used for feature detection is the direct mapping

of the time axis for a reflected signal to a spatial axis through the use of

the estimated wave velocity. In homogeneous media, this is a simpler task

since wave velocity is constant, but in nonuniform media the task becomes

increasingly complex. In simplified systems, direct mapping can be used for

ultrasonic imaging of small scale soil models, such as those presented by Lee

and Santamarina and Coe and Brandenberg, or through phase shift analysis

as presented by Gazdag et al. (Lee and Santamarina, 2005; Coe and Bran-

denberg, 2010; Gazdag, 1978). Pulse inversion, as presented by Shen et al.,
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can be used to image non-linearities in media through the use of two inputs: a

positive gaussian pulse followed by the inverted pulse to image the odd num-

bered modes of a system (Shen et al., 2005). Image resolution may also be

improved through the uses of filtering to improve the signal to noise ratio, but

coded inputs also help. Chirp signals may used to improve image contrast, as

presented by Santosa and Vogelius while match filtering may used in conjunc-

tion with a pseudo random input to detect reflections within noise (Santosa

and Vogelius, 1990).

A second class of methods uses model fitting of the system response

based on the system input, or simply model inversion. This method is often

used in seismic imaging since both the impedance contrasts between strati-

graphic layers as well as wave velocities need to be estimated. A series of

methods for one dimensional inversion based on a single emitter and receiver

are presented in a review paper by Newton (Newton, 1981). More advanced

inversion may be conducted through the application of Gaussian processes, as

presented in a comprehensive book by Rasmussen and Williams, or through

Bayesian system identification, as presented by Green and Worden, to improve

model fitting (Rasmussen and Williams, 2006; Green and Worden, 2014).

The detection capabilities of all these methods are limited by the band-

width of the inputs used, the sensing frequency, the impedance contrasts them-

selves and feature spacing. These will be discussed at length in the following

sections, but overviews may be found in reviews written by Cheney and Isaac-

son, as applied to electrical and conductive impedance imaging, by Smith
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and Webb, as applied to medical imaging, and by McCan and Forde and by

Drinkwater and Wilcox, as applied to non-destructive testing (Cheney and

Isaacson, 1992; Smith and Webb, 2011; McCann and Forde, 2001; Drinkwater

and Wilcox, 2006).

6.3 Theory

In this section, the wave velocity of axial, torsional and flexural waves

will be derived from first principles and then applied to quantifying resolvable

feature size and impedance contrast.

6.3.1 Wave Velocities

The drillstring is assumed to have a constant density, shear modulus

and Young’s modulus along its length. This allows wave velocity to be constant

and reduces model complexity.

6.3.1.1 Transverse or flexural waves

Transverse waves in a beam have different group and phase velocities,

with the group velocity being twice the phase velocity. This can easily be

shown by derivation if we assume that the wave equation has a solution of

the form u = ūei(ωt−βz) and the system conforms to the Euler-Bernoulli beam

model.

EI
∂4u

∂z4
+ ρA

∂2u

∂t2
= 0 (6.1)

(EIβ4 − ρAω2)ū = 0 (6.2)
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Which gives the dispersion relation

ω = β2

√
EI

ρA
(6.3)

Now, the group velocity, vg, and phase velocity, vp, may be calculated from

the dispersion relation as

vg =
dω

dβ
= 2β

√
EI

ρA
= 2
√
ω

(
EI

ρA

) 1
4

(6.4)

vp =
ω

β
= β

√
EI

ρA
=
√
ω

(
EI

ρA

) 1
4

(6.5)

6.3.1.2 Axial and torsional waves

Following from the derivation of the wave equation in Chapter 3, the

wave velocities of axial, va, and torsional, vt, waves are given by

va =

√
E

ρ
(6.6)

vt =

√
G

ρ
(6.7)

where G is the shear modulus, E is Young’s modulus, and ρ is the density of

the material.

6.3.2 Resolvable Features

Given the velocity for a wave and the sampling frequency, the maxi-

mumly resolvable feature is given by the Nyquist criteria for spatial resolution

lfeature = 2 · cwave ·∆tsample (6.8)
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For the setups considered in this writeup, the relevant parameters are

• Flexural waves in 7.2 meter beam sampled at 50kHz (cwave < 2436.2ms−1):

< 0.097 m

• Axial waves in a 7.2 meter beam sampled at 50kHz (cwave = 5188.7ms−1):

0.208 m

• Torsional waves measured at 100Hz at the drilling rig (cwave = 3202.6ms−1):

64.05 m

• Torsional waves measured at 125Hz on the laboratory drillstring setup

(cwave = 3202.6ms−1): 51.24 m of simulated length

This assumes that the input has sufficient bandwidth to excite all fre-

quencies, which necessitates a square wave or pulse with sharp edges. This is

not possible in many situations, due to ramp limitations on motor acceleration,

so the spatial resolution is reduced to the bandwidth of the input.

6.3.2.1 Feature contrast

The ability to image changes in impedance is dependent on the contrast

in impedances across the interface. Taking the reflectivity to be

Γ =
z1 − z2

z1 + z2

(6.9)

and taking z2 = az1, the reflectivity as a function of impedance contrast may

be plotted and is shown in Figure 6.1.
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Which means for an impedance contrast of 100% (z2 = 2z1 or z2 = 1
2
z1),

the reflectivity is only Γ = 1
3
, such as for the transition from 16.25 lb/ft 5”

drillpipe to 25.6 lb/ft 5” drillpipe.
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Figure 6.1: Reflectivity as a function of impedance contrast. Red dashed lines
indicate a 100% change in impedance across an interface.

6.3.2.2 Sensor location

On drilling rigs deployed in the field, rotary speed is either measured

with a spindle-mounted encoder or using the variable frequency drive. Torque

is typically measured using a current integration algorithm in the variable

frequency drive. From this setup, pipe rotary speed is equal to top drive

rotary speed due to a stiff system. However, measured torque does not equal

pipe torque due to the inertia of the top drive itself. An estimate of pipe

torque is given by

τpipe = τvfd − Jtdφ̈ = τvfd − jωJtdφ̇ (6.10)
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This inertial torque has a frequency dependent behavior, and thus the in-

terface between the drillstring and the top drive inherently has a reflectivity

coefficient.

Drill Pipe z0 
Top

Drive
JTD

Figure 6.2: Top drive and drill pipe interface.

Taking the impedance of an element to be:

z =
φ̇

τ
(6.11)

The reflection coefficient, Γ, can be calculated using:

Γ =
z0 − ztd
z0 + ztd

=
z0 − 1

jωJtd

z0 + 1
jωJtd

(6.12)

However, this formulation for motor torque only applies at high frequencies

since steady state torque, needed to overcome friction in the system, is not

included. If a simplified velocity dependent friction is included, the top drive

impedance becomes

τtd = jωJtdφ̇+ τfricφ̇ (6.13)

At high frequencies, the motor impedance is dominated by the motor inertia,

thus reducing the transmittance of high frequency signals to the torque sensor

which is located above the top drive in the variable frequency drive. Example
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Figure 6.3: Reflectivity and Transmissivity of the top drive considering just
inertial torque for a variety of top drive inertias (6.3a and 6.3b.)
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(a) Reflectivity and Transmissivity due to top drive inertia
with a velocity dependent frictional torque.
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Figure 6.4: Reflectivity and Transmissivity of the top drive considering just
inertial torque for a variety of top drive inertias with a simplified velocity
dependent friction (6.4a and 6.4b).
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reflection and transmission coefficients for a drill pipe with an impedance of

1/500 and a range of top drive inertias is presented in Figure 6.3. High fre-

quency signals will be reflected, and the cut-off frequency is lower the larger

the inertia of the top drive.
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6.4 Methods

Two groups of methods are described in the following section: a direct

time-space mapping and a model based inversion method.

6.4.1 Space-time mapping

Direct mapping of the temporal axis to a spatial axis allows for the a

system to imaged directly without any a priori knowledge of the configura-

tion. However, resolution is limited to the bandwidth of the input without

the application of filtering. Low pass, band pass and match filtering will be

discussed and applied.

6.4.1.1 Transverse Waves

For transverse waves traveling in a beam, high frequency waves will

arrive first, followed by the the slower low frequency waves. Dispersion com-

pensation, as presented by Wilcox, can then be used to resolve reflections off

of impedance changes by normalizing arriving waves based on their frequency

Wilcox (2003). The general procedure may be described as:

1. Obtain signal y(t), which is the response of the system as measured by

an accelerometer

2. Compute the FFT Y (ω) = F(y(t)) of the signal
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3. Linearly resample Y (ω) → H(k) based on a remapping of ω to k, each

frequency’s phase velocity to determine the mapping into the wave num-

ber domain for space

4. Compute the group wave velocity, cg(ω) of each ω in Y (ω).

5. Multiply H(k) with vg to determine wave amplitude.

6. Apply the reverse FFT h(x) = F−1(H(k)) to find the space mapped

wave response
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Figure 6.5: Visualizing the steps for dispersion compensation for flexural
waves, showing (clockwise from the top for each subfigure), the input x(t)
and output y(t), their respective FFTs, X(ω) and Y (ω), the system transfer
function H(ω) = Y (ω)/X(ω), the remapping of Y (ω) → H(k) and the space
mapped wave response h(x).
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6.4.1.2 Axial and Torsional Waves

The procedure to transform time based signals is as follows:

1. Obtain signals x(t), the input into the system and y(t) which is the

response of the system as measured

2. Compute the wave velocity, va or vt

3. Rescale the time axis of x(t) and y(t) to a distance axis by multiplying

by va or vt

For problems with heterogeneous media, wave velocity changes as a function

of distance; however, in this case, the wave velocity within steel is assumed to

be constant.
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Figure 6.6: Direct time-space mapping of axial and torsional waves, in the case
of constant wave velocity, simply involves rescaling the time axis to a spatial
axis.
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6.4.1.3 Filtering

Several filtering methods may be used to improve signal quality. Those

used in the following sections are detailed below.

• Matched Filtering – the optimal linear filter for maximizing the signal

to noise ratio, it is the correlation of the input signal, or template, with

the unknown signal

1. Let xr(t) be the time reversed, truncated version of the original

input x(t), truncated to just the input pulse

2. Compute yf (t) as y(t) filtered with xr(t)
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Figure 6.7: Direct time-space mapping of axial and torsional waves may be
improved by matched filtering.
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• Post Filtering

1. Compute the FFTs X(ω) = F(x(t)) and Y (ω) = F(y(t)) of the

signals

2. Compute the transfer function H(ω) = Y (ω)/X(ω)

3. Multiply H(ω) with the FFT, Xf (ω) of a filter.

– Gaussian input : A smooth gaussian input of width σ may be

simulated by the frequency domain function

Xf = e−
1
2

(σω)2 (6.14)
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Figure 6.8: Frequency domain representation of a gaussian input.

– Butterworth filter : A low pass filter may designed with a cutoff

frequency fcutoff with order n.
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Figure 6.9: Frequency domain representation of a second order low pass But-
terworth filter.

– Impulse response: The impulse response of the system may

be simulated by setting Xf (ω) = 1, but this amplifies high

frequency noise

4. Apply the reverse FFT h(x) = F−1(Hi(ω)) to find the space mapped

wave response

6.4.2 Transfer Function Estimation

The transfer function of the system can be estimated and then be used

to generate a step response curve. If the system is assumed to be time invariant

and linear, then it can be treated as a black box and estimated from the Fourier

transform of the input and the output.

H(ω) =
Y (ω)

X(ω)
(6.15)
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and the inverse Fourier transform h(t) = F−1(H(ω)) gives the estimated step

response.

This method only works if the input signal contains sufficient band-

width to provide a good estimate of H(ω) and works particularly well for

chirp inputs.

6.4.3 Inversion Methods

In inverse problems, observed data is fit to a model via an error mini-

mization technique. A modular method is implemented which allows for com-

ponents to be replaced with ease.

6.4.3.1 Time domain fitting

Drumheller presents a modified form of the wave equation which may be

used to model a structural transmission line with spatially varying impedance

(Drumheller, 1989). The familiar wave equation

∂2u(z, t)

∂t2
= v2∂

2u(z, t)

∂z2
(6.16)

may be transformed by introducing the change of variables z → m from dis-

tance to mass:

m =

∫ z

0

ρ(ζ) · A(ζ)dζ (6.17)

∂2u(m, t)

∂t2
= Z2∂

2u(m, t)

∂m2
(6.18)

where ρ(x) is the density, A(x) is the cross sectional area, and Z = ρAc is the

impedance.
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A simple finite difference scheme may be applied to solve the equation

numerically, where (
∂u

∂t

)n+ 1
2

j

=
un+1
j − unj

∆t
(6.19)(

∂2u

∂t2

)n
j

=
1

∆t

((
∂u

∂t

)n+ 1
2

j

−
(
∂u

∂t

)n− 1
2

j

)
=
un+1
j − 2unj + un−1

j

∆t2
(6.20)

Spatial discretization may be achieved using a similar transform as earlier,

where ∆r is the discretization in m:

∆rj+ 1
2

= ρj+ 1
2
aj+ 1

2
∆xj+ 1

2
(6.21)

Substituting these into modified wave equation and rearranging, the following

finite difference solution is obtained:

un+1
j − un−1

j =
2∆rj+ 1

2

∆rj+ 1
2

+ ∆rj− 1
2

unj+1 +
2∆rj− 1

2

∆rj+ 1
2

+ ∆rj− 1
2

unj−1 (6.22)

Normalized impedance may also be used with the following substitution

∆rj+ 1
2

=
Zj− 1

2
·∆x

cj− 1
2

(6.23)

and given a time discretization ∆t, it follows that ∆z = v∆t to ensure com-

patibility. The inversion procedure is then as follows:

1. For an input force x(t), the output acceleration y(t) at point z0 is

recorded at sampling frequency f for times t ∈ [0, t1]

2. A finite grid of time and space is generated with time discretization

∆t = 1/f and spatial discretization ∆z = v∆t. Normalized impedance

Z(z) is initialized as an array of 1’s.
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3. Minimize L2 error, e, between modeled system response ŷ(t) for t ∈ [0, t1]

based on forcing x(t) at z = 0 and distributed impedances Z(x) and the

measured system response y(t).

|e|2 =
√
y2
i − ŷ2

i (6.24)

6.5 Experimental Results

Data was collected from a series of experimental setups with varying

degrees of sensing quality and system complexity. The simplest system was a

hanging steel beam located at the University of Cambridge which allowed for

the study of axial and flexural waves. A laboratory drill string simulator at the

Shell Research campus in Rijswijk allowed for torsional waves to be studied

in a controlled environment. Data from the NAM T700 drilling rig was also

used as a case study for field deployment.

6.5.1 Beam Experiment

A 7.2 meter beam, freely suspended in air from the ceiling, as shown in

Figure 6.10, allows for the study of axial and flexural vibrations in a free-free

beam. The system is instrumented with three accelerometers – two transverse

accelerometers, mounted at 1.5 cm and 520 cm from end where the beam is

excited, and one axial accelerometer mounted on the excitation end.

Data was recorded at 50kHz in all cases and operational amplifiers were

used to amplify the accelerometer signals prior to data collection.
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Figure 6.10: Schematic of the hanging beam experiment.

(a) Mounted transverse
accelerometer two thirds
of the way down the
beam.

(b) Instrumented ham-
mer with three varied
stiffness tips and a force
transducer.

(c) Impact end
of beam with the
mounted axial and
transverse accelerome-
ters.

Figure 6.11: Components of the hanging beam experiment.

6.5.1.1 Effect of impulse length

The length of the input pulse was varied by changing the stiffness of

the hammer tip by using a different material: rubber, nylon and metal. The

shorter the impulse, the wider its bandwidth and the higher quality the re-

flections, as shown in Figure 6.12. Use of the rubber tipped hammer resulted

in a pulse longer than the round trip travel time for an axial wave, while the

nylon and metal tips progressively increased input bandwidth and allowed the

returning wave to increase in contrast.
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Figure 6.12: Changing the hammer tip material changes the length and char-
acter of the impulse.
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6.5.1.2 Direct time-space mapping

Two different waves are investigated – flexural waves and axial waves.

Flexural waves are slower and exhibit dispersion, so were included in the in-

vestigation to mimic torsional waves seen in field data. Results are shown in

figure 6.13 and clearly show beam length as well as the location of the midpoint

accelerometer. Applying a matched filter further improves the S:N ratio.

Figure 6.13 shows (clockwise from the top for each subfigure), the in-

put x(t) and output y(t), their respective FFTs, X(ω) and Y (ω), the system

transfer function H(ω) = Y (ω)/X(ω), the remapping of Y (ω) → H(k) and

the space mapped wave response h(x).

Axial waves travel faster with a wave speed that is not dependent on

frequency, so the same dispersion method cannot be used. Additional noise is

added to the system due to coupling between axial and flexural waves since

the beam is not perfectly straight. This can be seen as high frequency noise

that appears in the signal at multiples of 5/3 of the axial round trip time

(5/3 ≈ ca/cf ).

Figure 6.14 shows (clockwise from the top for each subfigure), the input

x(t) and output y(t), their respective FFTs, X(ω) and Y (ω), the filtered signal

yf (t) and its FFT, Yf (ω), the system transfer function H(ω) = Y (ω)/X(ω),

the application of the filter transfer function Xf (ω) to the system transfer

function Hf (ω) = H(ω) ·Xf (ω) and the space mapped wave response h(z).
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(a) Dispersion compensation for a flexural wave in a beam without
filtering applied.
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Figure 6.13: Visualizing the steps for dispersion compensation for flexural
waves.
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Figure 6.14: Visualizing the steps for dispersion compensation for axial waves.
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6.5.1.3 System transfer function estimation
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Figure 6.15: Estimating the system transfer function of the beam.

The hanging beam has significant cross coupling between axial and flex-

ural waves which causes difficulties when estimating the transfer function for
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axial waves, however, a reasonable estimate for beam length may be attained,

as shown in Figure 6.15.

6.5.1.4 Impedance map inversion

Using Drumheller’s wave equation modification to use element impedance,

an impedance map may be fit to the data (Drumheller, 1989). Since the model

does not account for the hammer - beam contact, only late time data, after

the hammer is no longer in contact, may be used to fit the model. The greater

the a priori knowledge of the system, the faster the fit is found and the higher

the confidence may be placed in the fitting parameters. For example, if beam

length is not know and is assumed to by 8 meters, as shown in Figure 6.16,

the model fit finds a high impedance is necessary at 7.4 meters to fit the data

reasonably. Using a priori knowledge about the beam length, as shown in Fig-

ure 6.17, the model converges to a minimum error faster and begins to reveal

more information about the beam. Changes in impedance begin to appear in

the region of 5 meters, where the accelerometer is located, as well as near the

beginning of the beam, where the first accelerometer is placed, to match the

higher frequency responses visible in the data.
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(a) Top plot shows force input (red) and
axial acceleration output (blue) from ex-
perimental data, the bottom plot shows
experimental axial acceleration in blue
and the fitted model response in red.

Time (s)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

A
m

p
lit

u
d
e
 (

V
)

-5

-4

-3

-2

-1

0

1

2

3
Recorded Data

force input x(t)
acceleration output y(t)

Time (s)
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

A
m

p
lit

u
d
e
 (

V
)

-5

-4

-3

-2

-1

0

1

2

3
Model Fit

Data
Model

(b) Top plot shows force input (red) and
axial acceleration output (blue) from ex-
perimental data, the bottom plot shows
experimental axial acceleration in blue
and the fitted model response in red.
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(c) Fitted impedance map of the beam
with an original beam length guess of 8
meters. A high impedance at 7.3 meters
is deduced.
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Figure 6.16: Fitting the model without knowing the beam length.
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(a) Top plot shows force input (red) and axial accelera-
tion output (blue) from experimental data, the bottom
plot shows experimental axial acceleration in blue and the
fitted model response in red.
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Figure 6.17: Fitting the model with a good initial guess of beam length. The
impedance map shows a high impedance at the left end of the beam where the
first accelerometer is placed and oscillation where the second one is located.
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6.5.2 Zebra Drillstring Simulator

The Zebra setup is a drillstring simulator at the Shell Research Cen-

ter in Rijswijk which simulates a 5750 meter drillstring as a series of lumped

masses mounted on a slender steel rod. An AC motor provides rotary motion

and is controlled via a compactRIO with an advanced experimental implemen-

tation of ZTorque.

Figure 6.18: Look up along the Zebra simulator.

6.5.2.1 System transfer function estimation

This implementation allows for white noise injection of a specified am-

plitude and period range. Setpoint RPM including the white noise input is

recorded at 125Hz and is synchronous with the torque signal. Example white

noise data is shown in Figure 6.19.

195



Time (s)
0 5 10 15 20 25 30 35 40 45 50

T
o

rq
u

e

-300

-200

-100

0
RPM Setpoint

Time (s)
0 5 10 15 20 25 30 35 40 45 50

R
P

M
 S

e
tp

o
in

t
31

32

33

34

35

36
RPM Setpoint

Figure 6.19: Injected white noise setpoint RPM and resulting torque. The
white noise is +/- 2 RPM with a quasi random period of 0.1 to 2 seconds.
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(a) System transfer function H(ω) = Y (ω)/X(ω) for 400 seconds of white noise
data.
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(b) Processed drillstring image using 400 seconds of data.

Figure 6.20: Recorded data and system transfer function.
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Using the white noise injection as a broad bandwidth excitation input

allows for the system transfer function to be reconstructed with clearly visible

modal shapes, as seen in Figure 6.19b. The random phase of the input noise

is compensated by this process, allowing the inverse FFT to show the impulse

response. Taking only the low frequency modal data (up to 8.5Hz) and per-

forming the inversion back to the spatial domain, the BHA and bit are clearly

visible, as seen in Figure 6.19c. The first clear return at 9000 meters is due to

the impedance contrast of the BHA, which begins at 4500 meters. The second

return at 11500 meters is the end of the system, which correctly gives the 5750

meter drillstring length the Zebra is simulating. The third return at 14000

meters is the reflection of the wave within the BHA. As a longer and longer

sampling window is used, secondary reflections will become more distinct and

can already be seen at 22000 meters and 25000 meters.

197



Distance (m)
×10

4
0 0.5 1 1.5 2 2.5 3

A
m

p
lit

u
d

e
 (

V
)

-1

-0.5

0

0.5

1

1.5

2
h(x) - 50 seconds

(a) Processed drillstring image using 50 seconds of data.
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(b) Processed drillstring image using 100 seconds of data.
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(c) Processed drillstring image using 200 seconds of data.
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(d) Processed drillstring image using 300 seconds of data.

Figure 6.21: Processed drillstring images from injection of white noise into the
surface rotary rate and the resulting impedance maps for different lengths of
data.
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The effects of sampling window length on feature resolution are shown

in Figure 6.21. Using a short time window of 50 seconds gives the bit return

but has a low signal to noise ratio. Moving to a 100 second sampling window

improves this ratio and the BHA begins to appear. Continuing to extend the

window continues to improve the signal to noise ratio until both the primary

returns of the BHA and bit are seen as well as the second reflection from within

the BHA.

Since a low pass filter of 8.5 Hz is used, the spatial resolution limited to

376 meters. The longer the sampling window, the wider the passband on the

lowpass filter may be to maintain an adequate signal to noise ratio, so smaller

features can still be identified. However, the passband is also limited by the

bandwidth of the random noise input, 10 Hz in this case.

Using white noise on the Zebra setup shows promise for field deploy-

ment and is a builtin capability on Canrig implementations of Ztorque.

6.5.2.2 Using cross correlation

When injecting white noise, cross correlation between the rpm setpoint

input and the torque out may also be used to identify reflections. The proce-

dure is as follows

• Compute the FFTs of the input, x(t) → X(ω), and the output, y(t) →

Y (ω)

• Compute H(ω) = Y (ω) · X̄(ω) where X̄(ω) is the complex conjugate
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• Compute the iFFT and rescale the x axis to a distance axis.
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(a) Using the transfer function approach.

Distance (m)
×10

4
0 0.5 1 1.5 2 2.5 3

A
m

p
lit

u
d

e
 (

V
)

×10
8

-2.582

-2.58

-2.578

-2.576

-2.574

-2.572

-2.57

-2.568

-2.566

h(x) - 400 seconds

(b) Using cross correlation.

Figure 6.22: Reflection maps using the transfer function reconstruction and
the cross correlation approach, both with 400 seconds of data.

Both transfer function estimation and cross correlation produce similar

results which are both limited by the bandwidth of the random noise input,

as shown in Figure 6.22.
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6.5.2.3 Model inversion

Using Drumheller’s time domain model with a free end at the bit, the

impedance map may be fit to the data if the cost function is the difference in

torque at the driving end and the displacement is the recorded rpm.
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(a) Recorded data (top) and recorded torque (red) and modeled torque (blue).
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(b) Fitted impedance map generated.

Figure 6.23: Impedance map generated by model inversion using Drumheller’s
wave equation.

This shows the high impedance change at the BHA location.
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6.5.3 NAM T700 Field Data

Field data was obtained from the drilling of a well by NAM on the T700

rig from normal drilling operations. The best candidates for imaging included

data from

• Initial rotation after connection are made. This data gives the step

response of the system from an rpm step. However, the step itself is

gradual, lasting one to two seconds, thus blurring out much of the sys-

tem response. Time-space mapping reveals little information, even with

filtering, but inversion is possible due to the system being originally at

rest. In early time, the bit can be assumed to be stuck, thus the system

can be modeled as a fixed-fixed beam in torsion. Three examples of such

events are shown in Figure 6.24.

• Injected square waves into drilling data. This data can be match filtered

and then fed into the time-space mapping algorithm, but inversion is

difficult due to the complexity of the system.

Injected white noise is also suggested as an input, but is not currently imple-

mented on the rig and thus cannot be tested.

On each connection, a nearly identical procedure is followed to begin

pipe rotation from standstill. This presents itself as a natural candidate for an

imaging method since a borehole image may be obtained for each stand. The

data does appear to show a low amplitude cyclic behavior during the first few

rotations before the bit and BHA break free and begin rotating.
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(a) Surface RPM (red) and surface torque (blue) for initial
rotation.
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(b) Surface RPM (red) and surface torque (blue) for initial
rotation.
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(c) Surface RPM (red) and surface torque (blue) for initial
rotation.

Figure 6.24: Three examples of initial rotation after a connection is made,
showing an RPM ramp and resulting torque curve. The bit and BHA are still
stuck, thus the bit acts as a pinned end.
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6.5.3.1 Time-space mapping

Torsional waves travel at a constant speed in drill pipe, allowing a

direct temporal-spatial mapping to occur with the time axis simply scaled by

the wave velocity. Additional filtering may improve imaging quality, however,

the low bandwidth of the input hampers efforts.

The data shows a periodic signal during the initial start of rotation

until the first slip event at the bit. However, even with filtering, the input

bandwidth is scarcely sufficient to even image the end of the drillstring, as

shown in Figures 6.25 and 6.26.

6.5.3.2 Model based inversion

Drumheller’s wave equation is used to model the drillstring with two

pinned ends. The bit is assumed pinned until enough torque is stored in

the string to free it. At the surface, the recorded rpm signal, x(t) is applied

as displacement per time. Surface torque is computed as the twist of the

uppermost element. Since the model does not include the top drive, this

computed torque needs to corrected by adding an inertial torque component.

τmeasured = τ̂model + Ω̇Jtd (6.25)

Steady state friction may also be added to improve the model fit, as shown in

Figure 6.27.

204



0 2 4 6 8 10

Time (s)

0

1

2

A
m

p
lit

u
d

e
 (

V
)

Original Signal -- x(t), y(t)

0

0.5

1

y(t)

x(t)

0 20 40 60 80 100

Frequency (Hz)

-100
-50

0
50

100

A
m

p
lit

u
d

e
 (

V
) Original FFT -- X(ω ), Y(ω )

-100
-50
0
50
100

Y(ω)

X(ω)

0 2 4 6 8 10
0

1

2
Filtered Signal, y

f
(t)

0

0.5

1

0 20 40 60 80 100

Frequency (Hz)

-100

0

100
Filtered FFT, Y

f
(ω )

0 20 40 60 80 100

Frequency (Hz)

-100

-50

0
Filter transfer function, X

f
(ω )

0 20 40 60 80 100

Frequency (Hz)

-20

0

20
System Transfer Function, H(ω )=Y

f
(ω )/X(ω )

0 0.5 1 1.5 2 2.5 3

Distance (m)
×10

4

-0.1

0

0.1

A
m

p
lit

u
d

e
 (

V
)

h(x)

0 20 40 60 80 100

Frequency (Hz)

-100

0

100

Filtered System Transfer Function, H
f
(ω )= H(ω )*X

f
(ω )

(a) Application of just a Butterworth low pass filter.
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(b) Detrending the torque data before application of a Butterworth low pass filter.

Figure 6.25: Time-space mapping with a Butterworth low pass filter with
original and detrended data with T700 data.

205



0 2 4 6 8 10

Time (s)

0

1

2

A
m

p
lit

u
d

e
 (

V
)

Original Signal -- x(t), y(t)

0

0.5

1

y(t)

x(t)

0 20 40 60 80 100

Frequency (Hz)

-100
-50

0
50

100

A
m

p
lit

u
d

e
 (

V
) Original FFT -- X(ω ), Y(ω )

0
50
100
150
200

Y(ω)

X(ω)

0 2 4 6 8 10
0

200
400
600
800

1000
Filtered Signal, y

f
(t)

0
200
400
600
800
1000

0 20 40 60 80 100

Frequency (Hz)

50

100

150
Filtered FFT, Y

f
(ω )

0 20 40 60 80 100

Frequency (Hz)

-100

-50

0
Filter transfer function, X

f
(ω )

0 20 40 60 80 100

Frequency (Hz)

0

2

4
System Transfer Function, H(ω )=Y

f
(ω )/X(ω )

0.5 1 1.5 2 2.5 3

Distance (m)
×10

4

-0.02
0

0.02

A
m

p
lit

u
d

e
 (

V
)

h(x)

0 20 40 60 80 100

Frequency (Hz)

-100

0

100

Filtered System Transfer Function, H
f
(ω )= H(ω )*X

f
(ω )

(a) Application of match filtering on the input and a butterworth low pass filter.
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(b) Using the derivative of RPM, match filtered and low pass butterworth filtered.

Figure 6.26: Time-space mapping with a match filter and computed accelera-
tion with T700 data.
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(a) Top plot showing the RPM setpoint (red) and torque (blue) for a start of rotation
after a connection. The bottom plot shows the recorded torque (blue) and the model
fitted torque (red), showing high agreement.
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(b) Processed drillstring impedance map computed by the model to generate the
best fit, showing an increase in impedance at 3200 m, which is near bit depth.

Figure 6.27: Fitting the wave equation model to field data shows a close model
fit and a reasonable impedance map.
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6.6 Conclusions

Three classes of methods are investigated as candidates processes for

drillstring imaging: direct time-space mapping, system transfer function es-

timation, and model based inversion. Direct time-space mapping maps the

response of a system to an input from the time domain to the spatial domain

using the wave velocity within the system, which is constant over different fre-

quencies for axial and torsional waves in steel pipe. Transfer function estima-

tion augments this approach through frequency domain filtering and impulse

response estimation to improve the resolution and contrast of features in the

system. Model based inversion attempts to fit a spatial impedance map of a

model based on the wave equation with assumed boundary conditions to the

system response. Direct time-space mapping is an effective method only if a

broadband system input is used, and match filtering can be used to remove ar-

tifacts due to the input. Transfer function estimation is used improve contrast

and resolution, and is shown to be effective on the beam experiment with an

impulse response and on the Zebra for a white noise input. It is not effective

on the T700 data due to the low bandwidth of the input as well as a low

signal-to-noise ratio for higher frequencies due to the large inertia of the top

drive. Model based inversion is shown to be a powerful technique, but only

if the model being fitted is a good approximation of the system and also has

the ability to overfit the system. Drillstring length on the T700 is effectively

estimated, however, BHA length could not be characterized effectively.
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For systems with low noise, clean sensing and a high bandwidth input,

direct time-space mapping is an effective technique, but is limited by Nyquist

to a maximal resolution. Filtering and transfer function estimation are able

to improve contrast of features and identify both the beam end in the hanging

beam as well as both the BHA and bit in the Zebra. However, for complex

systems, a white noise input has resulted in the best imaging results. This al-

lows a broad bandwidth of excitation, and with long sampling windows, results

in clear returns from features larger than those imageable by the highest fre-

quency excited. Model inversion produces excellent results as well for datasets

with impulse or step responses, regardless of input bandwidth. However, re-

sulting impedance maps are only as good as the models used to fit the system.

Once white noise injection is tested on a field drilling rig, it is expected that

drillstring components will be readily visible and will show an evolution in

depth as drilling proceeds. Resolved features which remain at constant depth

for a range of bit depths can then be inferred as friction points along the

drillstring and an exploration of this data is suggested as future work.

6.7 Further Work

• The use of white noise has been shown to be effective in the case of

the Zebra experimental setup. White noise injection has been built into

Canrig implementations of ZTorque but has not yet been tested in the

field. Immediate future work will involve injecting white noise with a

random period ranging from 0.1 to 2 seconds and several amplitudes to
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investigate the minimum amplitude necessary for a sufficient signal to

noise ratio.

• Model inversion has also been shown to be an effective technique. With

the move towards realtime kernels within the drilling dynamics suite, it

is recommended to implement the minimally sufficient model to allow

for real-time impedance map estimation. This can be combined with

real-time torque and drag estimation which will allow for the imaging of

deviated and horizontal wells.

• The vibrating behavior of strings is known to be dependent on tension.

There is a question whether applying a predetermined amount of torque

to a string before applying an impulse or step function improves signal

quality. This is especially relevant to the application in well abandon-

ment, where it is desired to find the top of cement in the wellbore.

• Datasets containing data from torque and tension subs placed below the

top drive can be used to verify the reflection effects of the top drive

inertia and to evaluate the improvement of signal quality. If both torque

and tension are recorded at high frequencies (greater than 100 Hz), it

is possible to evaluate both axial and torsional signals and any cross

coupling between them.
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6.8 Recommendations

• Torque should be recorded using a torque and tension sub below the

top drive to improve sensing abilities at higher frequencies. Even with a

small top drive, torsional signal transmission to the VFD, where torque is

traditionally measured, above 5 Hz approaches the ambient noise level.

For the top drive on T700, distinguishing signals from noise becomes

difficult above 1Hz

• Higher bandwidth inputs are necessary to allow for imaging of features

– For an impulse or square wave input, ramp time needs to fast. For

10 Hz bandwidth, the ramp cannot be longer than 0.1 seconds. For

1 Hz, 1 second, and for 0.5 Hz, 2 seconds.

– For white noise input, a range of periods from 0.1 seconds to 2 sec-

onds gives a bandwidth of 0.5 - 10 Hz. This bandwidth is widened

with smaller amplitude noise, but the signal to background noise

ratio decreases.

• White noise injection shows the greatest promise for drillstring mapping,

especially with longer sampling windows. The Zebra setup showed that

even with a +/- 2 RPM amplitude white noise input, the bit and BHA

could be distinguished in as little as 100 seconds.

• Repetitive rig activities, such as the start of rotation after a connection,

may be used to fit a drillstring model to estimate system parameters
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such as friction factors, but only if the model sufficiently describes the

system. This could become part of a realtime kernel which estimates the

torque and drag within a wellbore every stand.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

This dissertation presented a simple yet elegant drillstring model that

has been shown to be effective in modeling harmonic axial drillstring vibrations

and is useful for both the evaluation of control systems mitigating torsional os-

cillations as well for torsional drillstring imaging. The model was derived from

first principles and then verified with both field and experimental data in both

the axial and torsional cases. By abstracting the drillstring as a waveguide,

the model presents a computationally efficient method of characterizing the

drillstring dynamics, both at boundary conditions of interest or throughout

the entire drillstring at high spatial resolution.

In the axial case, the transfer matrix implementation was used to opti-

mize axial oscillation tool placement in drillstrings to maximize friction reduc-

tion while sliding. By modeling the oscillation source as an external harmonic

force input, the dynamic response of the drillstring was computed and then

compared with field data with multiple data recorders to verify vibration at-

tenuation. Then, by comparing the dynamic force throughout the drillstring,

friction reduction was computed as the fraction of the drillstring experiencing
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sufficient dynamic force to overcome static friction. Tool placement could then

be optimized by maximizing the friction reduction as a function of bit depth

– the longer the lateral, the less of the drillstring is in motion.

In the torsional case, the model was first used to evaluate the func-

tionality of four different top drive controllers and secondly for a feasibility

study of drillstring imaging. By using the time domain implementation of the

model, some of the features and drawbacks of each controller may be evaluated

visually:

• stiff PI controllers do not attenuate any torsional oscillation – as they

are designed to maintain rotary speed

• tuned PI controllers are successful at attenuating a single mode of stick-

slip

• second order PI controllers improve upon the performance of tuned PI

controllers

• impedance matching controllers successfully attenuate a wide band of

modes but do inject some high frequency noise.

These features and drawback can then be quantified by comparing the reflec-

tivity of the top drive – the ability of the top drive to absorb energy at certain

frequencies – with the mobility of the drillstring within different wellbore ge-

ometries.
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Finally, an exploration of drillstring imaging was conducted which eval-

uated the feasibility of imaging changes in the drillstring properties – both

properties of the drillstring itself as well as interactions with the borehole –

through a study of reflections in several experimental setups. It was concluded

that model fitting shows promise in inferring impedance maps of the system.

However, the best results were achieved through the injection of white noise

into the rpm signal while drilling. When evaluating the system from rest –

through the use of a step response – the use of signal processing and a transfor-

mation from time to space provided the best results, where spatial resolution

was a function of both input bandwidth and sensing frequency.

7.1.1 Contributions of this Dissertation

• The transfer matrix approach with augmented 3×3 matrices is shown to

be effective for modeling the effect of axial oscillation tools in drillstrings

to improve weight on bit and torque on bit transfer in sliding situations

in horizontal wells. Several case studies were presented that show agree-

ment between the model and field measurements including several which

use model predictions to optimize tool placement.

• An estimate of friction reduction is quantified from the drillstring re-

sponse modeled using the transfer matrix approach which allowed for

the placement of axial oscillation tools to be directly compared.

• An efficient method to quantify the effectiveness of stick-slip mitigation

control from the top drive by computing the drillstring mobility using
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a transfer matrix representation of the drillstring and an estimation of

damping based on wellbore trajectory.

• The recommendation that drillstring imaging using torsional waves in a

drillstring is possible and is best accomplished either using a white noise

input to the rpm setpoint while drilling or by using a wide bandwidth

step input and high frequency sensing while static.

– While using white noise, either transfer function reconstruction or

cross correlation may give clear images.

– When using a step input, the resulting drillstring image is strongly

affected by input bandwidth – i.e. the equivalent of a hammer blow

– and by sensing frequency.

7.2 Recommendations

The transfer matrix model for axial vibrations should be used to ver-

ify and tune future deployments of axial oscillators in the field. By improv-

ing placement and increasing friction reduction, longer laterals are possible,

increasing production per well and reducing the number of wells necessary.

Improvements in steering due to improved toolface control will also reduce

drilling times, improve wellbore quality and reduce tortuosity. Also, since the

model allows for the placement of multiple oscillation sources to be evaluated,

it opens up the possibility of continuing to extend the reach of laterals by

reducing the friction both in the curve and lateral sections.
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The operation of various stick-slip mitigation systems is well understood

in simple wellbores, yet wellbore trajectory and ensuing changes in drillstring

dynamics is not often considered. By optimizing the systems already installed

on rigs to target prevailing drillstring modes based on well geometry, drilling

performance may be improved without the need to upgrade the system.

Finally, since it has been shown that drillstring imaging using torsional

waves is possible, it is recommended that field trials be conducted, both uti-

lizing white noise injection while drilling and by hitting the drillpipe with the

equivalent of a hammer while static.

7.3 Further Work

Much of the work presented in this dissertation is directly applicable

to field applications, thus continued application to projects in the field is rec-

ommended.

• Evaluation of data from field trials with multiple oscillation sources needs

to be compared to model predictions and performance quantified.

• Control systems from different vendors may be directly compared if all

control system components are identified. These systems can then be

tuned, if wellbore geometries are known, to target the prevalent modes

of stick-slip.

• Data from any field trials pertaining to drillstring imaging needs to be

evaluated and the quality of the drillstring image assessed.
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Appendix A

List of Symbols and Abbreviations

A.1 Symbols

Symbol Meaning
i

√
−1

t time
z spatial coordinate along measure depth
ω frequency
s Laplace variable
u(x, t) axial displacement
φ(x, t) angular displacement
F force
A cross sectional area
E Young’s modulus
G shear modulus
η material damping factor
σ stress
ε strain
ρ density
ρm mud density
v wave velocity
va axial wave velocity
vt torsional wave velocity
U(x, ω) axial displacement in the frequency domain
c damping
C element damping
k spring constant
m element mass
γ & Z0 convenience functions in the transfer matrix
A transfer matrix
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Symbol Meaning
Wd work done by damping
Fd damping force
Fn normal force
Ft tensile force
µ friction coefficient
Ss Sensitivity
Cs(s) control system
Kp porportional gain
Ki integral gain
Kd derivative gain
Ps(s) plant
τinertia inertial torque
τtd top drive torque
τBHA BHA torque
Jtd top drive inertia
JBHA BHA inertia
fcutoff cut off frequency
fsp speed filter cut off frequency
tvfd time delay in a VFD
Tmotor motor torque signal
Tpipe pipe torque signal
Tvfd vfd torque signal
Tcomm commanded torque signal
ωpipe pipe angular velocity
ωset setpoint rpm
ωerr difference between pipe rpm and setpoint rpm
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A.2 Abbreviations
Abbreviation Meaning
BHA Bottom Hole Assembly
HFTO High Frequency Torsional Oscillations
FEM Finite Element Method
PID Proportional, Integral and Derivative (control)
PI Proportional and Integral (control)
PDC Polycrystalline Diamond Compact (bit)
RC Roller Cone (bit)
RPM Rotations Per Minute
DC Direct Current
AC Alternating Current
VFD Variable Frequency Drive
AOT Axial Oscillation Tool
DDR Dynamics (or Downhole) Data Recorder
RMS Root Mean Square
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Appendix B

Published Work

B.1 Published Conference Papers

1. Shor, R.J., Pehlivanturk, C., Acikmese, B., van Oort, E. Propagation

of Torsional Vibrations in Drillstrings: How Borehole Geome-

try Affects Transmission and Implications on Mitigation Tech-

niques. ICoEV 2015.

2. Shor, R.J., Dykstra, M.W. and Coming, M. For Better or Worse: Ap-

plications of the Transfer Matrix Approach for Analyzing Ax-

ial and Torsional Vibration. SPE/IADC Drilling Conference. 2015.

(SPE-173121-MS).

3. Ashok, P., Ambrus, A., Shor, R.J. and van Oort, E. Overcoming Bar-

riers to Adoption of Drilling Automation: Moving Towards

Automated Well Manufacturing. SPE/IADC Drilling Conference.

2015. (SPE-173164-MS).

4. Shor, R.J., Pryor, M. and van Oort, E. Drillstring Vibration Obser-

vation, Modeling and Prevention in the Oil and Gas Industry.

ASME Dynamic Systems and Controls Conference. 2014. (DSCC2014-

6147).

222



B.2 Papers in Preparation

1. Shor, R.J., Dykstra, M.W., Panchal, N. and van Oort, E. Drilling

Longer Horizontals: Estimating Friction Reduction from Mul-

tiple Axial Oscillation Tools. SPE/IADC Drilling Conference. 2017.

(Abstract to be submitted)

B.3 Proposed Papers

1. Shor, R.J., Butlin, T., Dwars, S., Blange, J.J, and van Oort, E. Imaging

Drillstrings with Torsional Waves. 2017 (conference / journal not

decided)

2. Shor, R.J., Ackimese, B., and van Oort, E. Evaluating Stick Slip

Mitigation Control System Performance in Deviated and Hor-

izontal Wells. 2017 (conference / journal not decided)
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Appendix C

Minimum Curvature Method

The input to the model is a series of survey points for a drilled or

planned wellbore. The path is discretized and interpolated for use by the model

using the minimum curvature approach commonly found in well planning best

practices. An in depth approach to interpolating wellpath from survey points is

presented in Sawaryn and Thorogood’s work and is derived from the minimum

curvature approach Sawaryn and Thorogood (2005). The relevant equations

are described below. The reference frame of a survey point can be described

in either the north-east-vertical frame or in the normal-tangential frame. For

the N-E-V frame, we have

p =

NE
V

 (C.1)

dp =

dNdE
dV

 =

sin θ cosφ
sin θ sinφ

cos θ

 (C.2)

θ = tan−1

(√
dN2 + dE2

dV

)
(C.3)

φ = tan−1

(
dE

dN

)
(C.4)
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In the normal-tangential reference frame, this equates to

h =

cos θ cosφ
cos θ sinφ
− sin θ

 (C.5)

r =

− sinφ
cosφ

0

 (C.6)

v =

0
0
1

 (C.7)

where θ is the inclination and φ is the azimuth. Dogleg severity, β then can

be calculated using

α = 2 sin−1

{√
sin2

(
θ2 − θ1

2

)
+ sin θ1 sin θ2 sin2

(
φ2 − φ1

2

)}
(C.8)

β =
18000 · α

π (D2 −D1)
(C.9)

The position of the next survey point is given by

p2 = p1 +
S12f(α)

2

sin θ1 cosφ1 + sin θ2 cosφ2

sin θ1 sinφ1 + sin θ2 sinφ2

cos θ1 + cos θ2

 (C.10)

where

f(α) =
tan(α/2)

α/2
(C.11)

is the shape factor and S12 is the arc length.

Given two survey points p1 and p2, a point p∗ can be interpolated on

subtended angle using

α∗ = tan−1

(
sin (φ1 − φ∗) sinα sin θ1

sin (φ∗ − φ2) sin θ2 + sin (φ1 − φ∗) sin θ1 cosα

)
(C.12)

θ∗ = 2 tan−1

(
A±
√
A2 +B2 − C2

B + C

)
(C.13)
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where

A = sin θ1 cos (φ∗ − φ1) B = cos θ1 C = cosα∗ (C.14)

If instead interpolation on inclination is desired, we have:

α∗ = 2 tan−1

(
A±
√
A2 +B2 − C2

B + C

)
(C.15)

θ∗ = tan−1

(
sin θ1 sinφ1 sin(α− α∗) + sin θ2 sinφ2 sinα∗

sin θ1 cosφ1 sin(α− α∗) + sin θ2 sinφ2 sinα∗

)
(C.16)

where

A = sin θ1 cos (φ∗ − φ1) B = cos θ1 C = cosα∗ (C.17)

The position vector of the interpolated point p is then given by

p∗ = p1 +
S12(1− cosα∗)

α∗ sinα∗
(t1 + t∗) (C.18)

Other possible interpolation methods include solving with a defined po-

sition at target, a defined position and orientation at target, and using the min-

imum distance or closest approach methods Sawaryn and Thorogood (2005).

The models developed by Sheppard et al., Johanscik et al., and Sawaryn and

Thorogood were used effectively to improve well path planning to reduce drag

force and torque. However, it was noted that accurate and high frequency

(measured at least once for every stand of drill pipe) were required to generate

meaningful data that could be acted upon (Brett, et al., 1989).
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Appendix D

Transfer Matrix Algorithm

Included below is skeleton code which lays out the steps necessary to

find the transfer matrix solution for a particular drillstring and wellbore.

1 %% Agitate
2 % Runs the AOT D r i l l s t r i n g Dynamics Simulator
3 %
4 % Author : Roman Shor
5 % I n s t i t u t i o n : The Un ive r s i ty o f Texas at Austin
6 % ( c ) 2016
7

8 % Open load ing window
9 sp l a sh ;

10

11 % Load Excel Data
12 [ survey , d r i l l s t r i n g , parameters ] = load data ;
13

14 % Calcu la te the Wellbore Path
15 % Using the Method o f Least Curvature
16 wel lpath = ca l c pa th ( survey ) ;
17

18 % D i s c r e t i z e the Wellpath
19 % by adding in te rmed ia te po in t s
20 nodes = d i s c r e t i z e ( d r i l l s t r i n g ) ;
21

22 % I n t e r p o l a t e the Wellpath
23 % based on a 30 f t element l ength
24 [ i n t e rpo l a t ed , nodes ] = i n t e r p o l a t e ( nodes , survey , wel lpath ,

parameters ) ;
25

26 % Calcu la te the Torque and Drag
27 % to g ive a normal f o r c e f o r damping e s t imat ion
28 torque = c a l c t o r q u e ( survey , d r i l l s t r i n g , parameters , wel lpath , nodes ,

i n t e r p o l a t e d ) ;
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29

30 % Calcu la te the D r i l l s t r i n g Dynamics
31 % using the e lements computed p r e v i o u s l y
32 dynamics = d r i l l s t r i n g d y n a m i c s ( parameters , nodes , i n t e rpo l a t ed ,

torque ) ;
33

34 % Plot the Data
35 p l o t da ta ( survey , wel lpath , nodes , i n t e rpo l a t ed , torque , dynamics ,

parameters ) ;
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Appendix E

Torsional Drillstring Model Code

The torsional time domain drillstring model, solved using finite dif-

ference, is coupled to an s-Domain control system simulation in Mathworks

SimulinkTM . This construct allows a non-linear bit model to be coupled to

the drillstring model and control systems described in Chapter 5 of this dis-

sertation.

The control system block is described either by Figure 5.26 for an

impedance matching controller and Figure 5.25 for a PI controller. The bit

model is an approximation using Stribeck friction and is described by Figure

5.4.

229



Da
ta 

Dis
pla

y

Dri
llst

rin
g M

od
el

RP
M 

Se
tpo

int
Bit

 M
od

el
To

p D
riv

e C
on

tro
ller

Im
pe

da
nc

e M
atc

hin
g

Tag
 Bo

tto
m

200
 El

em
en

t 5
000

 ft 
Dr

ills
trin

g M
od

el
RP

M 
Se

t P
oin

t se
t b

y s
qu

are
 wa

ve 
an

d a
 ra

mp
 lim

ite
r

Im
pe

da
nce

 M
atc

hin
g d

efi
ne

d b
y a

 %
.  D

ea
ctiv

ate
d a

t 0
%

Bo
tto

m 
Ta

gg
ing

 se
t b

y s
qu

are
 wa

ve 
t0

u

u_(
t-1

)

u_(
t-2

) dt

sim
ula

tion
 me

mo
ry

om
ega

_se
t

T_p
ipe

Hig
her

 Or
der Co

ntro
ller

Tor
que

s

Sy
ste

m 
Be

hav
ior

om
ega

s

on_
bot

tom

u_i
n

u2 dt

T_b
ha

T_s
urf

u_o
ut

dril
lstr

ing
 sim

ula
tor

Wh
ite 

No
ise

@ 
Bit

1/z
0

Imp
eda

nce

Pro
duc

t

1/1
00

Pe
rce

nt t
o

De
cim

al

60 
rpm @ 
5s

T_b
it

Str
ibe

ck 
Fric

tion
Bit

 Mo
del

Ra
te L

imi
ter

on 
bot

tom
@ 

30s
10 

sec
ond

s

60/
(2*

pi)

om
ega

 to
RP

M

Imp
eda

nce
Ma

tch
ing

1/(2
*pi

)
Ra

dia
ns 

to R
ota

tion
s

1
1/(2

*pi*
fsh

a)s
+1

Low
 Pa

ss
Tor

que
 Fil

ter
s

s+2
*pi*

ftc

Hig
h P

ass
Filt

er

80
Imp

eda
nce

 Ma
tch

ing
 %

Ov
erv

iew
 Be

hav
ior

0
Co

nst
ant

T_
pip

e

T_
pip

e

u_o
ut

Re
act

ive
 Bi

t To
rqu

e

rpm
_se

t

om
ega

_se
t

On
 Bo

ttom

w_
set

w_
pip

e
w_

bit

ma
tch

 %

om
ega

_m
atc

h

T_b
ha

Dri
llst

ring
 Tw

ist

F
ig

u
re

E
.1

:
S
im

u
li
n
k

M
o
d
el

u
se

d
to

m
o
d
el

to
rs

io
n
al

v
ib

ra
ti

on
s

in
co

n
ju

n
ct

io
n

w
it

h
a

to
p

d
ri

ve
co

n
tr

ol
le

r
an

d
m

o
d
el

.

230



Appendix F

Drillstring Imaging Algorithms

Included in this appendix is the basic code used to process the data for

axial, flexural and torsional waves in the three setups used in this dissertation

along with the filtering used.

1 %%
2 % Set o f code to conduct time−space mapping
3 %
4 % Author : Roman Shor
5 % I n s t i t u t i o n : The Un ive r s i ty o f Texas at Austin
6 % ( c ) 2016
7 %
8 % INPUT:
9 % type : ’ ax ia l ’

10 % ’ f l e x u r a l ’
11 % ’ t o r s i o n a l ’
12 %
13 % r i g : ’beam ’
14 % ’ zebra ’
15 % ’ f i e l d ’
16 %
17 % p r e f i l t e r : ’ none ’
18 % ’ matched ’
19 % ’ detrend ’
20 % ’ d e r i v a t i v e
21 %
22 % p o s t f i l t e r : ’ none ’
23 % ’ average ’
24 % ’ gauss ian ’
25 % ’ lowpass ’
26 % ’ butter ’
27 %
28 % f i l e : data f i l e o f i n t e r e s t
29 %
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30 %
31 % time space mapping ( ’ f l e x u r a l ’ , ’ beam ’ , ’ none ’ , ’ matched ’ , ’ f i l e 1 .

mat ’ )
32 % time space mapping ( ’ ax ia l ’ , ’ beam ’ , ’ none ’ , ’ gauss ian ’ , ’ f i l e 2 . mat

’ )
33 % time space mapping ( ’ t o r s i o n a l ’ , ’ f i e l d ’ , ’ d e r i v a t i v e ’ , ’ none ’ , ’

f i l e 3 . mat ’ )
34

35

36 f unc t i on time space mapping ( type , r i g , p r e f i l t e r , p o s t f i l t e r ,
f i l ename )

37

38

39 load ( f i l ename ) ;
40

41 switch r i g
42 case ’beam ’
43 %% Beam parameters
44 E = 210E9 ;
45 I = 6 .7E−10;
46 L = 7 . 2 ;
47 rho = 7 .8E3 ;
48 A = 2.02E−4;
49 % get t1 and t2 f o r a s p e c i f i c f i l ename
50 switch f i l ename
51 % F i l e s
52 end
53

54 case ’ f i e l d ’
55 %% Beam parameters
56 E = 210E9 ;
57 G = 80E9 ;
58 I = 6 .7E−10;
59 rho = 7 .8E3 ;
60 % get t1 and t2 f o r a s p e c i f i c f i l ename
61 switch f i l ename
62 % F i l e s
63 end
64

65 f r e q = 100 ;
66 sample = round ( f r e q ∗ [ t1 t2 ] ) +1;
67 yin = ext rac t ed . Torque actua l ( sample (1 ) : sample ( end ) ) ;
68 xin = ext rac t ed . RPM encoder ( sample (1 ) : sample ( end ) ) ;
69 xb = f l i p u d ( xin ) ;
70
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71

72 case ’ zebra ’
73 %% Beam parameters
74 E = 210E9 ;
75 G = 80E9 ;
76 I = 6 .7E−10;
77 rho = 7 .8E3 ;
78 % get t1 and t2 f o r a s p e c i f i c f i l ename
79 switch f i l ename
80 %F i l e s
81 end
82

83 f r e q = 125 ;
84 sample = f l o o r ( f r e q ∗ [ t1 t2 ] ) +1;
85 yin = ZT. Torque ( sample (1 ) : sample ( end ) ) ;
86 xin = ZT.RPM SP( sample (1 ) : sample ( end ) ) ;
87 xb = f l i p u d ( xin ) ;
88 end
89

90 switch type
91

92 case ’ a x i a l ’
93 sample = f l o o r ( f r e q ∗ [ t1 t2 ] ) +1;
94 yin = indata ( sample (1 ) : sample ( end ) ,2 ) ;
95 xin = indata ( sample (1 ) : sample ( end ) ,1 ) ;
96 xb = f l i p u d ( xin ( 1 : 2 5 ) ) ;
97 switch p r e f i l t e r
98 case ’ detrend ’
99 y = detrend ( yin ) ;

100 case ’ none ’
101 y = yin ;
102 case ’ matched ’
103 y = f i l t e r (xb , 1 , detrend ( yin ) ) ;
104 case ’ d e r i v a t i v e ’
105 Nf = 50 ;
106 Fpass = 5E3 ;
107 Fstop = 10E3 ;
108

109 d = d e s i g n f i l t ( ’ d i f f e r e n t i a t o r f i r ’ , ’ F i l t e rOrde r ’ ,
Nf , . . .

110 ’ PassbandFrequency ’ , Fpass , ’ StopbandFrequency ’ ,
Fstop , . . .

111 ’ SampleRate ’ , f r e q ) ;
112

113
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114 xin = f i l t e r (d , xin ) ;
115 xin = [ xin ( Nf/2+1: end ) ; x in ( end−Nf/2+1: end ) ] ;
116 xb = f l i p u d ( xin ( 1 : 2 5 ) ) ;
117 y = f i l t e r (xb , 1 , y in ) ;
118

119 end
120 N = length ( y ) ;
121 tmax = (N−1) / f r e q ;
122 t = 0 :1/ f r e q : tmax ;
123

124

125

126 %% Map to f requency
127 w = 2∗ pi ∗ l i n s p a c e (0 , f r e q ∗(N−1)/N,N) ;
128 Y = f f t ( y ) ;
129 X = f f t ( xin ) ;
130 X1 = 3∗ exp (−0.5∗(10/500000∗w( 1 : end /2) ) . ˆ 2 ) ;
131 X1 = [ X1 f l i p l r (X1) ] ;
132

133

134 %% Map to space
135 w2 = w( 1 : f l o o r ( l ength (w) /2) ) ;
136 H = Y. /X;
137 H(H>1E10) = 0 ;
138 cg = s q r t (E/ rho ) ;
139 Ht = H;
140 f p r i n t f ( ’ Axia l Ve loc i ty i s %0.3 f m/ s and max r e s o l u t i o n i s

%0.3 f m\n ’ , cg , 2∗ cg/ f r e q ) ;
141 switch p o s t f i l t e r
142 case ’ none ’
143 Xf = ones ( s i z e (H) ) ;
144

145 case ’ average ’
146 B = 1/5∗ ones (5 , 1 ) ;
147 H = f i l t f i l t (B, 1 ,H) ;
148 Xf = ones ( s i z e (H) ) ;
149 case ’ input ’
150 Xf = X;
151 case ’ gauss ian ’
152 Xf = X1 ’ ;
153 case ’ lowpass ’
154 c u t o f f = f i n d (w>37.5E3 , 1 , ’ f i r s t ’ ) ;
155 Xf = ones ( s i z e (H) ) ;
156 Xf ( c u t o f f : end−c u t o f f ) = 1E−6∗Xf ( c u t o f f : end−c u t o f f )

;
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157 case ’ butte r ’
158 n = 2 ;
159 f = 50 ;
160

161 [ zb , pb , kb ] = butte r (n ,2∗ pi ∗ f , ’ s ’ ) ;
162 [ bb , ab ] = zp2t f ( zb , pb , kb ) ;
163 [ Xf ,wb ] = f r e q s (bb , ab , round ( l ength (w) /2) ) ;
164 Xf = [ Xf ’ f l i p l r ( Xf ’ ) ] ’ ;
165 H=H.∗X;
166

167 end
168

169 H = H.∗Xf ;
170 Hp = [H ze ro s ( s i z e (H) ) ] ;
171 h = i f f t (Hp, ’ symmetric ’ ) ;
172

173 Nx = length (h) ;
174 x = l i n s p a c e (0 , cg∗tmax ,Nx) ;
175 k = w;
176

177 case ’ f l e x u r a l ’
178 sample = round ( f r e q ∗ [ t1 t2 ] ) +1;
179 yin = indata ( sample (1 ) : sample ( end ) ,2 ) ;
180 xin = indata ( sample (1 ) : sample ( end ) ,1 ) ;
181 y = yin ;
182 N = length ( yin ) ;
183 tmax = (N−1) / f r e q ;
184 t = 0 :1/ f r e q : tmax ;
185

186 %% Map to f requency
187 w = 2∗ pi ∗ l i n s p a c e (0 , f r e q ∗(N−1)/N,N) ;
188 Yin = f f t ( yin ) ;
189 Y = Yin ;
190 X = f f t ( xin ) ;
191

192 %% Map to space
193 w2 = w( 1 : round ( l ength (w) /2) ) ;
194 k = s q r t (w2) ∗( rho∗A/E/ I ) . ˆ ( 1 / 4 ) ;
195 k new = l i n s p a c e (0 ,max( k ) ,N) ;
196 w new = int e rp1 (k , w2 , k new ) ;
197 H = inte rp1 (w, Yin , w new , ’ s p l i n e ’ ) ;
198 Xh = int e rp1 (w,X, w new , ’ s p l i n e ’ ) ;
199 Xf = Xh;
200 cg = 2∗ s q r t (w new) ∗(E∗ I / rho/A) . ˆ ( 1 / 4 ) ;
201 H = cg .∗H;
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202 f p r i n t f ( ’ F l exura l Ve l c i t y ranges from %0.3 f to %0.3 f and
r e s o l u t i o n ranges from %0.3 f to %0.3 f m’ , . . .

203 min ( cg ) , max( cg ) , 2∗min ( cg ) / f req , 2∗max( cg ) / f r e q ) ;
204 Hp = [H ze ro s ( s i z e (H) ) ] ;
205 Xh = [Xh ze ro s ( s i z e (Xh) ) ] ;
206 switch p o s t f i l t e r
207 case ’ none ’
208 h = i f f t (Hp, ’ symmetric ’ ) ;
209 Xf = ones ( s i z e ( Xf ) ) ;
210 case ’ matched ’
211 h = i f f t (Hp, ’ symmetric ’ ) ;
212 xh = i f f t (Xh, ’ symmetric ’ ) ;
213 xb = f l i p u d ( xh ( 1 : 1 0 ) ) ;
214 h = f i l t e r (xb , 1 , h) ;
215 end
216

217 Ht = Yin . /X;
218 H = H( 1 : end /2) ;
219 Nx = length (h) ;
220

221 x = l i n s p a c e ( 0 , (Nx−1) / ( k ( end ) ∗2/2/ p i ) ,Nx) ;
222

223

224 case ’ t o r s i o n a l ’
225

226

227 x i = xin ;
228

229 switch p r e f i l t e r
230 case ’ none ’
231 y = yin ;
232 case ’ detrend ’
233 y = detrend ( yin ) ;
234 case ’ matched ’
235 y = f i l t e r (xb , 1 , y in ) ;
236 x i = f i l t e r (xb , 1 , x in ) ;
237 case ’ d e r i v a t i v e ’
238 Nf = 30 ;
239 Fpass = 10 ;
240 Fstop = 15 ;
241

242 d = d e s i g n f i l t ( ’ d i f f e r e n t i a t o r f i r ’ , ’ F i l t e rOrde r ’ ,
Nf , . . .

243 ’ PassbandFrequency ’ , Fpass , ’ StopbandFrequency ’ ,
Fstop , . . .
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244 ’ SampleRate ’ , f r e q ) ;
245

246 f c = 10 ;
247 f s = f r e q ;
248 [ b , a ] = butte r (1 , f c /( f s /2) , ’ high ’ ) ;
249 x i = f i l t e r (b , a , x in ) ;
250 x i = [ xin ( Nf/2+1: end ) ; x in ( end−Nf/2+1: end ) ] ;
251 xb = f l i p u d ( xin (129 : 148 ) ) ;
252 y = f i l t e r (xb , 1 , y in ) ;
253

254 end
255 N = length ( y ) ;
256 tmax = (N−1) / f r e q ;
257 t = 0 :1/ f r e q : tmax ;
258

259 %% Map to f requency
260 w = l i n s p a c e (0 , f r e q ∗(N−1)/N,N) ;
261 Yin = f f t ( yin ) ;
262 Y = f f t ( y ) ;
263 X = f f t ( x i ) ;
264

265 %% Map to space
266 w2 = w( 1 : round ( l ength (w) /2) ) ;
267 H = Y. /X;
268 H(H>1E10) = 0 ;
269 cg = s q r t (G/ rho ) ;
270 Ht = H;
271

272 f p r i n t f ( ’ Tor s i ona l Ve loc i ty i s %0.3 f m/ s and max
r e s o l u t i o n i s %0.3 f m\n ’ , cg , 2∗ cg/ f r e q ) ;

273

274 switch p o s t f i l t e r
275 case ’ average ’
276 B = 1/3∗ ones (3 , 1 ) ;
277 H = f i l t f i l t (B, 1 ,H) ;
278 Xf = ones ( s i z e (H) ) ;
279 case ’ none ’
280 Xf = ones ( s i z e (H) ) ;
281 case ’ input ’
282 Xf = X;
283 case ’ gauss ian ’
284 X1 = 3∗ exp (−0.5∗(5/100∗w( 1 : end /2) ) . ˆ 2 ) ;
285 X1 = [ X1 f l i p l r (X1) ] ;
286 Xf = [ X1 X1( end ) ] ’ ;
287 case ’ lowpass ’
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288 c u t o f f = f i n d (w>10 ,1 , ’ f i r s t ’ ) ;
289 Xf = ones ( s i z e (H) ) ;
290 Xf ( c u t o f f : end−c u t o f f ) = 1E−12∗Xf ( c u t o f f : end−c u t o f f

) ;
291

292 case ’ butte r ’
293 n = 5 ;
294 f = 10 ;
295

296 [ zb , pb , kb ] = butte r (n , f , ’ s ’ ) ;
297 [ bb , ab ] = zp2t f ( zb , pb , kb ) ;
298 [ Xf ,wb ] = f r e q s (bb , ab , f l o o r ( l ength (w) /2) ) ;
299 Xf = [ Xf ’ f l i p l r ( Xf ’ ) ] ’ ;
300 i f l ength ( Xf ) < l ength (H)
301 Xf = [ Xf ; Xf ( end ) ] ;
302 end
303

304 case ’ xcor r ’
305 H = Y;
306 Xf = conj (X) ;
307

308 end
309

310 H = H.∗Xf ;
311

312 Hp = [H ze ro s ( s i z e (H) ) ] ;
313 Htp = [ Ht z e ro s ( s i z e (Ht) ) ] ;
314 h = i f f t (Hp, ’ symmetric ’ ) ;
315

316

317 Nx = length (h) ;
318 x = l i n s p a c e (0 , cg ∗( t2−t1 ) ,Nx) ;
319 k = w;
320

321 end
322

323 %% Plot Resu l t s
324 %
325 % Not inc luded in t h i s p r in tout
326

327 end
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