3,352 research outputs found

    The Equivalence of Sampling and Searching

    Get PDF
    In a sampling problem, we are given an input x, and asked to sample approximately from a probability distribution D_x. In a search problem, we are given an input x, and asked to find a member of a nonempty set A_x with high probability. (An example is finding a Nash equilibrium.) In this paper, we use tools from Kolmogorov complexity and algorithmic information theory to show that sampling and search problems are essentially equivalent. More precisely, for any sampling problem S, there exists a search problem R_S such that, if C is any "reasonable" complexity class, then R_S is in the search version of C if and only if S is in the sampling version. As one application, we show that SampP=SampBQP if and only if FBPP=FBQP: in other words, classical computers can efficiently sample the output distribution of every quantum circuit, if and only if they can efficiently solve every search problem that quantum computers can solve. A second application is that, assuming a plausible conjecture, there exists a search problem R that can be solved using a simple linear-optics experiment, but that cannot be solved efficiently by a classical computer unless the polynomial hierarchy collapses. That application will be described in a forthcoming paper with Alex Arkhipov on the computational complexity of linear optics.Comment: 16 page

    Integrated software package STAMP for minor planets

    Get PDF
    The integrated software package STAMP allowed for rapid and exact reproduction of the tables of the year-book 'Ephemerides of Minor Planets.' Additionally, STAMP solved the typical problems connected with the use of the year-book. STAMP is described. The year-book 'Ephemerides of Minor Planets' (EMP) is a publication used in many astronomical institutions around the world. It contains all the necessary information on the orbits of the numbered minor planets. Also, the astronomical coordinates are provided for each planet during its suitable observation period

    Qubit Entanglement Breaking Channels

    Get PDF
    This paper continues the study of stochastic maps, or channels, which break entanglement. We give a detailed description of entanglement-breaking qubit channels, and show that such maps are precisely the convex hull of those known as classical-quantum channels. We also review the complete positivity conditions in a canonical parameterization and show how they lead to entanglement-breaking conditions.Comment: Contains main results from section 2 of quant-ph/0207100 Version 2 corrects minor typos. Final version to appear in Rev. Math. Phy

    An Universal Quantum Network - Quantum CPU

    Get PDF
    An universal quantum network which can implement a general quantum computing is proposed. In this sense, it can be called the quantum central processing unit (QCPU). For a given quantum computing, its realization of QCPU is just its quantum network. QCPU is standard and easy-assemble because it only has two kinds of basic elements and two auxiliary elements. QCPU and its realizations are scalable, that is, they can be connected together, and so they can construct the whole quantum network to implement the general quantum algorithm and quantum simulating procedure.Comment: 8 pages, Revised versio

    Optimizing local protocols implementing nonlocal quantum gates

    Full text link
    We present a method of optimizing recently designed protocols for implementing an arbitrary nonlocal unitary gate acting on a bipartite system. These protocols use only local operations and classical communication with the assistance of entanglement, and are deterministic while also being "one-shot", in that they use only one copy of an entangled resource state. The optimization is in the sense of minimizing the amount of entanglement used, and it is often the case that less entanglement is needed than with an alternative protocol using two-way teleportation.Comment: 11 pages, 1 figure. This is a companion paper to arXiv:1001.546

    Optimum Quantum Error Recovery using Semidefinite Programming

    Get PDF
    Quantum error correction (QEC) is an essential element of physical quantum information processing systems. Most QEC efforts focus on extending classical error correction schemes to the quantum regime. The input to a noisy system is embedded in a coded subspace, and error recovery is performed via an operation designed to perfectly correct for a set of errors, presumably a large subset of the physical noise process. In this paper, we examine the choice of recovery operation. Rather than seeking perfect correction on a subset of errors, we seek a recovery operation to maximize the entanglement fidelity for a given input state and noise model. In this way, the recovery operation is optimum for the given encoding and noise process. This optimization is shown to be calculable via a semidefinite program (SDP), a well-established form of convex optimization with efficient algorithms for its solution. The error recovery operation may also be interpreted as a combining operation following a quantum spreading channel, thus providing a quantum analogy to the classical diversity combining operation.Comment: 7 pages, 3 figure

    Entropy Bound for the Classical Capacity of a Quantum Channel Assisted by Classical Feedback

    Get PDF
    We prove that the classical capacity of an arbitrary quantum channel assisted by a free classical feedback channel is bounded from above by the maximum average output entropy of the quantum channel. As a consequence of this bound, we conclude that a classical feedback channel does not improve the classical capacity of a quantum erasure channel, and by taking into account energy constraints, we conclude the same for a pure-loss bosonic channel. The method for establishing the aforementioned entropy bound involves identifying an information measure having two key properties: 1) it does not increase under a one-way local operations and classical communication channel from the receiver to the sender and 2) a quantum channel from sender to receiver cannot increase the information measure by more than the maximum output entropy of the channel. This information measure can be understood as the sum of two terms, with one corresponding to classical correlation and the other to entanglement.Comment: v2: 6 pages, 1 figure, final version published in conference proceeding

    Engineered Microbial Habitats for Health, Fuel, and Food

    Get PDF
    Microorganisms are of vital importance in medicine, in industry, and in the natural environment. In agricultural systems, bacteria fix nitrogen, protect crop roots from pathogens, and promote water retention in soils. In the biotech industry, microbes are harnessed to produce food, pharmaceuticals and biofuels. Microbes are essential for health, yet microbial pathogens continue to cause more human deaths worldwide than all forms of cancer combined. In each case, whether microbes are found in soil, in industry, or in vivo, micron-scale habitat conditions critically impact the structure and function of microbial communities. In our work, we design and build artificial microbial habitats that emulate selected micron-scale features of real microbial habitats. In this talk I will survey ongoing research projects including (i) a microfluidic biofilm array for screening antimicrobial combinations and measuring the effect of antimicrobial delivery rate on biofilm inhibition; (ii) a growth chamber with appropriately-scaled oxygen gradients for sustaining the complex hindgut microbiome of cellulose-degrading termites; and (iii) a testing device for seed coating technology aimed at enhancing crop yields in the developing world

    Magnetic qubits as hardware for quantum computers

    Full text link
    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states |0> and |1> are the ground and first excited spin states Sz = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, |0>, and antisymmetric, |1>, combinations of the two-fold degenerate ground state Sz = +- S. In each case the temperature of operation must be low compared to the energy gap, \Delta, between the states |0> and |1>. The gap \Delta in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware.Comment: 17 pages, 3 figure
    corecore