1,401 research outputs found

    Flow induced by a sphere settling in an aging yield-stress fluid

    Full text link
    We have studied the flow induced by a macroscopic spherical particle settling in a Laponite suspension that exhibits a yield-stress, thixotropy and shear-thinning. We show that the fluid thixotropy (or aging) induces an increase with time of both the apparent yield stress and shear-thinning properties but also a breaking of the flow fore-aft symmetry predicted in Hershel-Bulkley fluids (yield-stress, shear-thinning fluids with no thixotropy). We have also varied the stress exerted by the particles on the fluid by using particles of different densities. Although the stresses exerted by the particles are of the same order of magnitude, the velocity field presents utterly different features: whereas the flow around the lighter particle shows a confinement similar to the one observed in shear-thinning fluids, the wake of the heavier particle is characterized by an upward motion of the fluid ("negative wake"), whatever the fluid's age. We compare the features of this negative wake to the one observed in viscoelastic shear-thinning fluids (polymeric or micelle solutions). Although the flows around the two particles strongly differ, their settling behaviors display no apparent difference which constitutes an intriguing result and evidences the complexity of the dependence of the drag factor on flow field

    Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    Get PDF
    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300– 700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation

    Observational evidence for the convective transport of dust over the central United States

    Get PDF
    Bulk aerosol composition and aerosol size distributions measured aboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry Experiment mission in May/June 2012 were used to investigate the transport of mineral dust through nine storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (\u3c5 km mean sea level (MSL)) in the storm inflow region were compared to those made in cirrus anvils (altitude \u3e 9 km MSL). Storm mean outflow Ca2+ mass concentrations and total coarse (1 µm \u3c diameter \u3c 5 µm) aerosol volume (Vc) were comparable to mean inflow values as demonstrated by average outflow/inflow ratios greater than 0.5. A positive relationship between Ca2+, Vc, ice water content, and large (diameter \u3e 50 µm) ice particle number concentrations was not evident; thus, the influence of ice shatter on these measurements was assumed small. Mean inflow aerosol number concentrations calculated over a diameter range (0.5 µm \u3c diameter \u3c 5.0 µm) relevant for proxy ice nuclei (NPIN) were ~15–300 times higher than ice particle concentrations for all storms. Ratios of predicted interstitial NPIN (calculated as the difference between inflow NPIN and ice particle concentrations) and inflow NPIN were consistent with those calculated for Ca2+ and Vc and indicated that on average less than 10% of the ingested NPIN were activated as ice nuclei during anvil formation. Deep convection may therefore represent an efficient transport mechanism for dust to the upper troposphere where these particles can function as ice nuclei cirrus forming in situ

    Particulate Oxalate-to-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations

    Get PDF
    Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154 – 0.0296; R = 0.76; N = 2948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio towards higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio may be used to estimate the relative extent of aqueous processing by comparing inferred oxalate concentrations between air masses, with the assumption that sulfate primarily originates from aqueous processing

    Reconciling Assumptions in Bottom-Up and Top-Down Approaches for Estimating Aerosol Emission Rates From Wildland Fires Using Observations From FIREX-AQ

    Get PDF
    Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air quality and atmospheric composition. Two traditional approaches are widely used to calculate fire emissions: a satellite-based top-down approach and a fuels-based bottom-up approach. However, these methods often considerably disagree on the amount of particulate mass emitted from fires. Previously available observational datasets tended to be sparse, and lacked the statistics needed to resolve these methodological discrepancies. Here, we leverage the extensive and comprehensive airborne in situ and remote sensing measurements of smoke plumes from the recent Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign to statistically assess the skill of the two traditional approaches. We use detailed campaign observations to calculate and compare emission rates at an exceptionally high-resolution using three separate approaches: top-down, bottom-up, and a novel approach based entirely on integrated airborne in situ measurements. We then compute the daily average of these high-resolution estimates and compare with estimates from lower resolution, global top-down and bottom-up inventories. We uncover strong, linear relationships between all of the high-resolution emission rate estimates in aggregate, however no single approach is capable of capturing the emission characteristics of every fire. Global inventory emission rate estimates exhibited weaker correlations with the high-resolution approaches and displayed evidence of systematic bias. The disparity between the low-resolution global inventories and the high-resolution approaches is likely caused by high levels of uncertainty in essential variables used in bottom-up inventories and imperfect assumptions in top-down inventories

    Psychological attachment to the group: Cross-cultural differences in organizational identification and subjective norms as predictors of workers' turnover intentions

    Get PDF
    Two studies wed the theory of reasoned action, social identity theory, and Ashforth and Mael's work on organizational identification to predict turnover intentions in Japanese and British commercial and academic organizations. In both studies and in both countries, the authors expected and found that identification with the organization substantially and significantly predicted turnover intentions. Attitudes predicted intentions only in Study 2, and subjective norms significantly predicted intentions across both studies. The authors hypothesized that subjective norms would be a significantly stronger predictor of turnover intentions in a collectivist setting. This prediction was supported. Although social identity is strongly associated with turnover intentions across both cultures, the subjective normative aspects of group membership are significantly more strongly associated in the Japanese organizations
    corecore