50 research outputs found

    The Milky Way bar/bulge in proper motions: a 3D view from VIRAC & Gaia

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.We have derived absolute proper motions of the entire Galactic bulge region from VIRAC and Gaia. We present these as both integrated on-sky maps and, after isolating standard candle red clump (RC) stars, as a function of distance using RC magnitude as a proxy. These data provide a new global, 3-dimensional view of the Milky Way barred bulge kinematics. We find a gradient in the mean longitudinal proper motion, μl\mu_l, between the different sides of the bar, which is sensitive to the bar pattern speed. The split RC has distinct proper motions and is colder than other stars at similar distance. The proper motion correlation map has a quadrupole pattern in all magnitude slices showing no evidence for a separate, more axisymmetric inner bulge component. The line-of-sight integrated kinematic maps show a high central velocity dispersion surrounded by a more asymmetric dispersion profile. σμl/σμb\sigma_{\mu_l} / \sigma_{\mu_b} is smallest, ∼1.1\sim1.1, near the minor axis and reaches ∼1.4\sim1.4 near the disc plane. The integrated pattern signals a superposition of bar rotation and internal streaming motion, with the near part shrinking in latitude and the far part expanding. To understand and interpret these remarkable data, we compare to a made-to-measure barred dynamical model, folding in the VIRAC selection function to construct mock maps. We find that our model of the barred bulge, with a pattern speed of 37.5 km s−1 kpc−1\mathrm{km \, s^{-1} \, kpc^{-1}}, is able to reproduce all observed features impressively well. Dynamical models like this will be key to unlocking the full potential of these data.Peer reviewe

    Green Corrosion Inhibitory Potentials of Cassava Plant (<em>Manihot esculenta</em> Crantz) Extract Nanoparticles (CPENPs) in Coatings for Oil and Gas Pipeline

    Get PDF
    Internal and external corrosion affects oil and gas pipelines and were discussed in this chapter. Corrosion inhibitors are one of the methods that can be used to achieve corrosion control and prevention. The main discussion in this chapter was the use of cassava plant (Manihot esculenta Crantz) extract nanoparticles (CPENPs) as an additive in coatings to serve as a green corrosion inhibitor for oil and gas pipeline. Trace elements, such as O, Si, Ca, K, Fe and S, which are hetero-atoms, have been identified in CPENPs. Elements like Si and Ca would also improve the strength of coatings as well as reduce corrosion rate of coated metals. It has also been revealed that CPENPs is composed of the following compounds SiO2, CaCO3, Ca2(SO4)2H2O and CaC2O4(H2O), which would help in improving the mechanical properties of alloys, composites and coatings. SiO2 if added to coatings will improve the coating hardness, while the presence of CaCO3 in coatings will form a precipitate that will serve as a protective film on the surface of the metal, thereby protecting the metal from corrosion. The nature of bond and organic compounds that exist in the CPENPs was also discussed

    Targeted truncation of the ADAM17 cytoplasmic domain in mice results in protein destabilization and a hypomorphic phenotype

    Get PDF
    A disintegrin and metalloprotease 17 (ADAM17) is a cellsurface metalloprotease that serves as the principle sheddase for tumor necrosis factor alpha (TNF alpha), interleukin-6 receptor (IL6R), and several ligands of the epidermal growth factor receptor (EGFR), regulating these crucial signaling pathways. ADAM17 activation requires its transmembrane domain, but not its cytoplasmic domain, and little is known about the role of this domain in vivo. To investigate, we used CRISPR-Cas9 to mutate the endogenous Adam17 locus in mice to produce a mutant ADAM17 lacking its cytoplasmic domain (Adam17 Delta cyto). Homozygous Adam17 Delta cyto animals were born at a Mendelian ratio and survived into adulthood with slightly wavy hair and curled whiskers, consistent with defects in ADAM17/EGFR signaling. At birth, Adam17 Delta cyto mice resembled Adam17-/- mice in that they had open eyes and enlarged semilunar heart valves, but they did not have bone growth plate defects. The deletion of the cytoplasmic domain resulted in strongly decreased ADAM17 protein levels in all tissues and cells examined, providing a likely cause for the hypomorphic phenotype. In functional assays, Adam17 Delta cyto mouse embryonic fibroblasts and bone-marrow-derived macrophages had strongly reduced ADAM17 activity, consistent with the reduced protein levels. Nevertheless, ADAM17 Delta cyto could be stimulated by PMA, a well-characterized posttranslational activator of ADAM17, corroborating that the cytoplasmic domain of endogenous ADAM17 is not required for its rapid response to PMA. Taken together, these results provide the first evidence that the cytoplasmic domain of ADAM17 plays a pivotal role in vivo in regulating ADAM17 levels and function

    Simulation and Optimization of an Integrated Process Flow Sheet for Cement Production

    Get PDF
    In this study the process flow diagram for the cement production was simulated using Aspen HYSYS 8.8 software to achieve high energy optimization and optimum cement flow rate by varying the flow rate of calcium oxide and silica in the clinker feed. Central composite Design (C.C.D) of Response Surface Methodology was used to design the ten experiments for the simulation using Design Expert 10.0.3. Energy efficiency optimization is also carried out using Aspen Energy Analyser. The optimum cement flow rate is found from the contour plot and 3D surface plot to be 47.239 tonnes/day at CaO flow rate of 152.346 tonnes/day and the SiO2 flow rate of 56.8241 tonnes/day. The R2 value of 0.9356 determined from the statistical analysis shows a good significance of the model. The overall utilities in terms of energy are found to be optimised by 81.4% from 6.511 x 107 kcal/h actual value of 1.211 x 107 kcal/h with 297.4 tonnes/day the carbon emission savings

    Energy and Economic Comparison of Different Fuels in Cement Production

    Get PDF
    Cement clinkerisation is the major energy-consuming process in cement manufacturing due to the high-temperature requirement. In this paper, energy data including specific energy consumption, forms, and types of energy used at different units of cement manufacturing processes were analyzed and compared for effectiveness, availability, cost, environmental, and health impact. Data from three different cement industries in Nigeria labeled as A, B, and C were used for the analysis in this study. The results of this research work established that coal is the cheapest energy source but environmental issues exonerate it from being the choice energy source. LPFO and Natural gas give better production output while minimizing pollution and health issues. When benchmarked against each other, Factory B was found to be the most energy-efficient in terms of output and cost of production. Although coal is cheaper compared to fuel oil and supposed to contribute a share of fuel used in cement industries, the industries are moving towards the use of alternative and conventional fuels to reduce environmental pollution. It is therefore recommended that deliberate effort to achieve appreciable energy-efficient levels should be the priorities of the cement industries in Nigeria

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Modelling length of stay and patient flows : Methodological case studies from the UK neonatal care services

    Get PDF
    Copyright and all rights therein are retained by the authors. All persons copying this information are expected to adhere to the terms and conditions invoked by each author's copyright. These works may not be re-posted without the explicit permission of the copyright holdersThe number of babies needing neonatal care is increasing due mainly to technological and therapeutic advances. These advances have implied a decreasing neonatal mortality rate for low birth weight infants and also a falling incidence of preterm stillbirth. Given the structural changes in the National Health Service in England, coupled with recession and capacity constraints, the neonatal system is facing some serious challenges, such as nurse shortages and the lack of cots, which could inevitably impact neonates length of stay, and the performance of the system as a whole. These constraints have forced neonatal managers to better understand their organisation and operations in order to optimize their systems. As a result, we have developed three unique methodologies based on length of stay modelling, physical patient pathways, and system dynamics modelling. This paper evaluates these techniques applied to neonatal services in London, and showcases their usefulness and implications in practice, particularly focusing on patient flow to determine major drivers of the system, which could reduce inefficiencies, improve patient experience, and reduce cos

    Glitazone Treatment Rescues Phenotypic Deficits in a Fly Model of Gaucher/Parkinson&rsquo;s Disease

    No full text
    Parkinson&rsquo;s Disease (PD) is the most common movement disorder, and the strongest genetic risk factor for PD is mutations in the glucocerebrosidase gene (GBA). Mutations in GBA also lead to the development of Gaucher Disease (GD), the most common type of lysosomal storage disorder. Current therapeutic approaches fail to address neurological GD symptoms. Therefore, identifying therapeutic strategies that improve the phenotypic traits associated with GD/PD in animal models may provide an opportunity for treating neurological manifestations of GD/PD. Thiazolidinediones (TZDs, also called glitazones) are a class of compounds targeted for the treatment of type 2 diabetes, and have also shown promise for the treatment of neurodegenerative disease, including PD. Here, we tested the efficacy of glitazone administration during development in a fly GD model with deletions in the GBA homolog, dGBA1b (GBA1&Delta;TT/&Delta;TT). We observed an optimal dose of pioglitazone (PGZ) at a concentration of 1 &mu;M that reduced sleep deficits, locomotor impairments, climbing defects, and restoration of normal protein levels of Ref(2)P, a marker of autophagic flux, in GBA1&Delta;TT/&Delta;TT mutant flies, compared to GBA1+/+ control flies. These data suggest that PGZ may represent a potential compound with which to treat GD/PD by improving function of lysosomal-autophagy pathways, a cellular process that removes misfolded or aggregated proteins
    corecore