355 research outputs found

    Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling

    Get PDF
    Nucleosomes, the fundamental units of chromatin structure, are regulators and barriers to transcription, replication and repair. Post-translational modifications (PTMs) of the histone proteins within nucleosomes regulate these DNA processes. Histone H3(T118) is a site of phosphorylation [H3(T118ph)] and is implicated in regulation of transcription and DNA repair. We prepared H3(T118ph) by expressed protein ligation and determined its influence on nucleosome dynamics. We find H3(T118ph) reduces DNA–histone binding by 2 kcal/mol, increases nucleosome mobility by 28-fold and increases DNA accessibility near the dyad region by 6-fold. Moreover, H3(T118ph) increases the rate of hMSH2–hMSH6 nucleosome disassembly and enables nucleosome disassembly by the SWI/SNF chromatin remodeler. These studies suggest that H3(T118ph) directly enhances and may reprogram chromatin remodeling reactions

    Gene Mapping by Chromosome Microdissection and Microisolation in the Chicken

    Get PDF
    A chromosome microdissection and microisolation technique in combination with filter hybridization was developed for chromosomal localization of cloned chicken genes. The DNA was obtained from microdissected chromosome regions of metaphase spreads. Dissected DNA was amplified by polymerase chain reaction (PCR). The chicken MHC gene located on the nucleolar chromosome and β-actin gene located on chromosome 2q were chosen as tests for the procedure and then detected by dot blot analysis using amplified chromosomal DNA probed with biotinylated DNA. The study establishes the technique of using chromosome microdissection and microisolation for localization of cloned genes as a complementary or alternative approach to both in situ DNA/chromosome hybridization and fluorescent in situ hybridization

    The Lantern Vol. 8, No. 2, March 1940

    Get PDF
    • The Music of Life • The Dice Were Loaded • Collecting People • Chemistry and Disease • Quest • Comrade • Entity • We Cannot Go On Forever • The Problem • Beside a Campfire • Smoke • Sunset on Winnipesaukee and Varied Reflections • All\u27s Quiet in the Early Morn • Torture • After the Concert • Nostalgiahttps://digitalcommons.ursinus.edu/lantern/1020/thumbnail.jp

    Ischemic stroke risk, smoking, and the genetics of inflammation in a biracial population: the stroke prevention in young women study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although cigarette smoking is a well-established risk factor for vascular disease, the genetic mechanisms that link cigarette smoking to an increased incidence of stroke are not well understood. Genetic variations within the genes of the inflammatory pathways are thought to partially mediate this risk. Here we evaluate the association of several inflammatory gene single nucleotide polymorphisms (SNPs) with ischemic stroke risk among young women, further stratified by current cigarette smoking status.</p> <p>Methods</p> <p>A population-based case-control study of stroke among women aged 15–49 identified 224 cases of first ischemic stroke (47.3% African-American) and 211 age-comparable control subjects (43.1% African-American). Several inflammatory candidate gene SNPs chosen through literature review were genotyped in the study population and assessed for association with stroke and interaction with smoking status.</p> <p>Results</p> <p>Of the 8 SNPs (across 6 genes) analyzed, only <it>IL6 </it>SNP rs2069832 (allele C, African-American frequency = 92%, Caucasian frequency = 55%) was found to be significantly associated with stroke using an additive model, and this was only among African-Americans (age-adjusted: OR = 2.2, 95% CI = 1.0–5.0, p = 0.049; risk factor adjusted: OR = 2.5, 95% CI = 1.0–6.5, p = 0.05). When stratified by smoking status, two SNPs demonstrated statistically significant gene-environment interactions. First, the T allele (frequency = 5%) of <it>IL6 </it>SNP rs2069830 was found to be protective among non-smokers (OR = 0.30, 95% CI = 0.11–.082, p = 0.02), but not among smokers (OR = 1.63, 95% CI = 0.48–5.58, p = 0.43); genotype by smoking interaction (p = 0.036). Second, the C allele (frequency = 39%) of <it>CD14 </it>SNP rs2569190 was found to increase risk among smokers (OR = 2.05, 95% CI = 1.09–3.86, p = 0.03), but not among non-smokers (OR = 0.93, 95% CI = 0.62–1.39, p = 0.72); genotype by smoking interaction (p = 0.039).</p> <p>Conclusion</p> <p>This study demonstrates that inflammatory gene SNPs are associated with early-onset ischemic stroke among African-American women (<it>IL6</it>) and that cigarette smoking may modulate stroke risk through a gene-environment interaction (<it>IL6 and CD14</it>). Our finding replicates a prior study showing an interaction with smoking and the C allele of <it>CD14 </it>SNP rs2569190.</p

    Using social cognitive career theory to understand why students choose to study computer science

    Get PDF
    The aim of this research is to use Social Cognitive Career Theory (SCCT) to identify and understand reasons why students choose to study Computer Science (CS) at university. SCCT focuses on students’ prior experience, social support, self-efficacy and outcome expectation. The research is part motivated by the desire to increase female participation rates in CS, particularly in the UK. Policymakers can use the factors that both females and males identify as influencing their choice of studying CS to enhance the experiences of all students prior to coming to university, but female students in particular. The study uses a semi-structured interview with 17 mixed gender subjects currently studying CS at three Scottish universities. The findings are that social support from family, teachers, friends and mentors is a particularly important factor in choosing to study CS, especially for female subjects. The career paths offered by a CS degree is another major factor, not just the potential jobs, but also the general value of a CS education and the potential to make useful contributions to society. School education appeared to have limited influence, though exposure to problem solving, programming, online self-learning and internships are positive influences. The stereotypical view of CS students as ‘geeks’ is outdated and unhelpful – it is more appropriate to see them as ‘analytical’ or ‘over-achievers’. Subjects make many suggestions for improving the CS education provided at school, especially to make it more attractive to females, including: make it compulsory, teach it earlier, include more programming and problem solving, and increase the visibility of female exemplars and role models

    Practitioner\u27s Guide to Technology, Pedagogy, and Content Knowledge (TPACK): Rich Media Cases of Teacher Knowledge

    Get PDF
    The goal of the TPACK Practitioners Guide is simple--to offer exemplary cases of technology integration efforts that result in curriculum-based student learning in each of the following nine content areas and grade level contexts: Elementary Science, Elementary Math, Elementary Social Studies, Elementary Reading, Middle School Language Arts, Secondary Science, Secondary Math, Secondary Social Studies, and, Secondary English.https://scholarworks.wm.edu/book/1000/thumbnail.jp

    An Efficient Site-Specific Method for Irreversible Covalent Labeling of Proteins with a Fluorophore

    Get PDF
    Fluorophore labeling of proteins while preserving native functions is essential for bulk Forster resonance energy transfer (FRET) interaction and single molecule imaging analysis. Here we describe a versatile, efficient, specific, irreversible, gentle and low-cost method for labeling proteins with fluorophores that appears substantially more robust than a similar but chemically distinct procedure. The method employs the controlled enzymatic conversion of a central Cys to a reactive formylglycine (fGly) aldehyde within a six amino acid Formylglycine Generating Enzyme (FGE) recognition sequence in vitro. The fluorophore is then irreversibly linked to the fGly residue using a Hydrazinyl-Iso-Pictet-Spengler (HIPS) ligation reaction. We demonstrate the robust large-scale fluorophore labeling and purification of E. coli (Ec) mismatch repair (MMR) components. Fluorophore labeling did not alter the native functions of these MMR proteins in vitro or in singulo. Because the FGE recognition sequence is easily portable, FGE-HIPS fluorophore-labeling may be easily extended to other proteins.open1157sciescopu

    Enhanced annealing of mismatched oligonucleotides using a novel melting curve assay allows efficient in vitro discrimination and restriction of a single nucleotide polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many SNP discrimination strategies employ natural restriction endonucleases to discriminate between allelic states. However, SNPs are often not associated with a restriction site and therefore, a number of attempts have been made to generate sequence-adaptable restriction endonucleases. In this study, a simple, sequence-adaptable SNP discrimination mechanism between a 'wild-type' and 'mutant' template is demonstrated. This model differs from other artificial restriction endonuclease models as <it>cis- </it>rather than <it>trans-</it>orientated regions of single stranded DNA were generated and cleaved, and therefore, overcomes potential issues of either inefficient or non-specific binding when only a single variant is targeted.</p> <p>Results</p> <p>A series of mismatch 'bubbles' that spanned 0-5-bp surrounding a point mutation was generated and analysed for sensitivity to S1 nuclease. In this model, generation of oligonucleotide-mediated ssDNA mismatch 'bubbles' in the presence of S1 nuclease resulted in the selective degradation of the mutant template while maintaining wild-type template integrity. Increasing the size of the mismatch increased the rate of mutant sequence degradation, until a threshold above which discrimination was lost and the wild-type sequence was degraded. This level of fine discrimination was possible due to the development of a novel high-resolution melting curve assay to empirically determine changes in Tm (~5.0°C per base-pair mismatch) and to optimise annealing conditions (~18.38°C below Tm) of the mismatched oligonucleotide sets.</p> <p>Conclusions</p> <p>The <it>in vitro </it>'cleavage bubble' model presented is sequence-adaptable as determined by the binding oligonucleotide, and hence, has the potential to be tailored to discriminate between any two or more SNPs. Furthermore, the demonstrated fluorometric assay has broad application potential, offering a rapid, sensitive and high-throughput means to determine Tm and annealing rates as an alternative to conventional hybridisation detection strategies.</p

    Parkinsonian phenotype in Machado-Joseph disease (MJD/SCA3): a two-case report

    Get PDF
    Background: Machado-Joseph disease (MJD), or spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant neurodegenerative disorder of late onset, which is caused by a CAG repeat expansion in the coding region of the ATXN3 gene. This disease presents clinical heterogeneity, which cannot be completely explained by the size of the repeat tract. MJD presents extrapyramidal motor signs, namely Parkinsonism, more frequently than the other subtypes of autosomal dominant cerebellar ataxias. Although Parkinsonism seems to segregate within MJD families, only a few MJD patients develop parkinsonian features and, therefore, the clinical and genetic aspects of these rare presentations remain poorly investigated. The main goal of this work was to describe two MJD patients displaying the parkinsonian triad (tremor, bradykinesia and rigidity), namely on what concerns genetic variation in Parkinson's disease (PD) associated loci (PARK2, LRRK2, PINK1, DJ-1, SNCA, MAPT, APOE, and mtDNA tRNAGln T4336C). Case presentation: Patient 1 is a 40 year-old female (onset at 30 years of age), initially with a pure parkinsonian phenotype (similar to the phenotype previously reported for her mother). Patient 2 is a 38 year-old male (onset at 33 years of age), presenting an ataxic phenotype with parkinsonian features (not seen either in other affected siblings or in his father). Both patients presented an expanded ATXN3 allele with 72 CAG repeats. No PD mutations were found in the analyzed loci. However, allelic variants previously associated with PD were observed in DJ-1 and APOE genes, for both patients. Conclusions: The present report adds clinical and genetic information on this particular and rare MJD presentation, and raises the hypothesis that DJ-1 and APOE polymorphisms may confer susceptibility to the parkinsonian phenotype in MJD
    corecore