3,059 research outputs found

    Study of flight management requirements during SST low visibility approach and landing operations Final summary report

    Get PDF
    Flight management operational problems and task requirements for low visibility approach and landing of supersonic transport

    Methods and considerations for the analysis and standardization of assessing muscle sympathetic nerve activity in humans

    Get PDF
    © 2015 Elsevier B.V.. The technique of microneurography and the assessment of muscle sympathetic nerve activity (MSNA) are used in laboratories throughout the world. The variables used to describe MSNA, and the criteria by which these variables are quantified from the integrated neurogram, vary among studies and laboratories and, therefore, can become confusing to those starting to learn the technique. Therefore, the purpose of this educational review is to discuss guidelines and standards for the assessment of sympathetic nervous activity through the collection and analysis of MSNA. This review will reiterate common practices in the collection of MSNA, but will also introduce considerations for the evaluation and physiological inference using MSNA

    Methods and considerations for the analysis and standardization of assessing muscle sympathetic nerve activity in humans.

    Get PDF
    The technique of microneurography and the assessment of muscle sympathetic nerve activity (MSNA) are used in laboratories throughout the world. The variables used to describe MSNA, and the criteria by which these variables are quantified from the integrated neurogram, vary among studies and laboratories and, therefore, can become confusing to those starting to learn the technique. Therefore, the purpose of this educational review is to discuss guidelines and standards for the assessment of sympathetic nervous activity through the collection and analysis of MSNA. This review will reiterate common practices in the collection of MSNA, but will also introduce considerations for the evaluation and physiological inference using MSNA

    Hydro-without-Hydro Framework for Simulations of Black Hole-Neutron Star Binaries

    Full text link
    We introduce a computational framework which avoids solving explicitly hydrodynamic equations and is suitable to study the pre-merger evolution of black hole-neutron star binary systems. The essence of the method consists of constructing a neutron star model with a black hole companion and freezing the internal degrees of freedom of the neutron star during the course of the evolution of the space-time geometry. We present the main ingredients of the framework, from the formulation of the problem to the appropriate computational techniques to study these binary systems. In addition, we present numerical results of the construction of initial data sets and evolutions that demonstrate the feasibility of this approach.Comment: 16 pages, 7 figures. To appear in the Classical and Quantum Gravity special issue on Numerical Relativit

    Initial Data and Coordinates for Multiple Black Hole Systems

    Get PDF
    We present here an alternative approach to data setting for spacetimes with multiple moving black holes generalizing the Kerr-Schild form for rotating or non-rotating single black holes to multiple moving holes. Because this scheme preserves the Kerr-Schild form near the holes, it selects out the behaviour of null rays near the holes, may simplify horizon tracking, and may prove useful in computational applications. For computational evolution, a discussion of coordinates (lapse function and shift vector) is given which preserves some of the properties of the single-hole Kerr-Schild form

    Finding apparent horizons and other two-surfaces of constant expansion

    Full text link
    Apparent horizons are structures of spacelike hypersurfaces that can be determined locally in time. Closed surfaces of constant expansion (CE surfaces) are a generalisation of apparent horizons. I present an efficient method for locating CE surfaces. This method uses an explicit representation of the surface, allowing for arbitrary resolutions and, in principle, shapes. The CE surface equation is then solved as a nonlinear elliptic equation. It is reasonable to assume that CE surfaces foliate a spacelike hypersurface outside of some interior region, thus defining an invariant (but still slicing-dependent) radial coordinate. This can be used to determine gauge modes and to compare time evolutions with different gauge conditions. CE surfaces also provide an efficient way to find new apparent horizons as they appear e.g. in binary black hole simulations.Comment: 21 pages, 8 figures; two references adde

    The local atomic quasicrystal structure of the icosahedral Mg25Y11Zn64 alloy

    Full text link
    A local and medium range atomic structure model for the face centred icosahedral (fci) Mg25Y11Zn64 alloy has been established in a sphere of r = 27 A. The model was refined by least squares techniques using the atomic pair distribution (PDF) function obtained from synchrotron powder diffraction. Three hierarchies of the atomic arrangement can be found: (i) five types of local coordination polyhedra for the single atoms, four of which are of Frank-Kasper type. In turn, they (ii) form a three-shell (Bergman) cluster containing 104 atoms, which is condensed sharing its outer shell with its neighbouring clusters and (iii) a cluster connecting scheme corresponding to a three-dimensional tiling leaving space for few glue atoms. Inside adjacent clusters, Y8-cubes are tilted with respect to each other and thus allow for overall icosahedral symmetry. It is shown that the title compound is essentially isomorphic to its holmium analogue. Therefore fci-Mg-Y-Zn can be seen as the representative structure type for the other rare earth analogues fci-Mg-Zn-RE (RE = Dy, Er, Ho, Tb) reported in the literature.Comment: 12 pages, 8 figures, 2 table
    • …
    corecore